REPRESENTATIONS OF COMPACT GROUPS AND MINIMAL IMMERSIONS INTO SPHERES

MANFREDO P. DO CARMO & NOLAN R. WALLACH

1. Let G be a compact group, K a closed subgroup of G, and C(M) the space of all real-valued continuous functions on the homogeneous space M = G/K. Then G has a natural action on C(M) given by $g \cdot f(p) = f(g^{-1}p)$, $f \in C(M)$, $g \in G$, $p \in M$. Let V be a (necessarily finite-dimensional) invariant irreducible subspace of C(M). Then V may be given an inner product $\langle \cdot, \cdot \rangle$ by $\langle f, g \rangle = \int_M f g d\mu$, where the homogeneous measure $d\mu$ normalized in such a way that $\int_M d\mu = \dim V$; relative to $\langle \cdot, \cdot \rangle$, G acts orthogonally on V.

Definition. We say that V satisfies condition A if f_1, \dots, f_{τ} form an orthonormal basis of V (in particular, $r = \dim V$), whenever f_1, \dots, f_{τ} are linearly independent in V and $\sum_{i=1}^{\tau} f_i^2(p) = 1$ for all $p \in M$.

In this paper, we are concerned with the following question: For which homogeneous spaces M is condition A satisfied for all invariant irreducible subspaces of C(M)?

We shall restrict ourselves to the simplest homogeneous spaces, namely, the simply connected homogeneous spaces G/K, where (G,K) is a symmetric pair of compact type. We recall that for such a pair, G is a compact, semi-simple Lie group with an involutive automorphism $s:G\to G$ which is such that K is left fixed by s, and K contains the component of the identity of the fixed point set of s. To ensure the simply connectedness of G/K, we assume further that G is connected, simply connected and that K is connected. In this situation, condition A is strangely rare. In fact, we prove the following:

Theorem 1. Let M = G/K be a homogeneous space such that (G, K) is a symmetric pair of compact type, G is connected and simply connected, and K is connected. Then condition A is satisfied for all invariant, irreducible subspaces of C(M) if and only if M is the 2-dimensional sphere $S^2 = SU(2)/U(1)$.

In § 2, we prove Proposition 1, which says that the invariant, irreducible subspaces of $C(S^2)$ satisfy condition A. In § 3, we prove Proposition 2, which

Communicated by S. S. Chern, November 25, 1968. The first author was a Guggenheim fellow partially supported by C. N. Pq. and N. S. F. GP-8623, and the second author was partially supported by N. S. F. GP-7499.

shows that some invariant, irreducible subspace of SU(2) does not satisfy condition A, and also Proposition 3, which is a similar assertion for M = G/K, where (G, K) satisfy the hypothesis of Theorem 1, and $M \neq S^2$. Theorem 1 follows from Propositions 1 and 3.

The above question was motivated by a problem of differential geometry, namely, to determine all isometric, minimal immersions of a symmertic space M into the standard sphere. In § 4, we give an exposition of this problem and show how Proposition 1 of § 2 can be used to give an answer in the case $M = S^2$.

The paper is written with an eye for the differential geometer. $\S 4$ can be read independently of $\S 3$, and the use of the theory of representations of Lie groups in $\S 2$ and 4 has been reduced to a minimum.

2. In this section, we prove Proposition 1, for which we need some preliminary lemmas.

Let G/K be a homogeneous space of a compact Lie group G, V be an invariant irreducible subspace of C(G/K), and dim V = n. We first remark that the choice of an orthonormal basis h_1, \dots, h_n for V determines an isometry of V with the Euclidean space R^n , and also a map $x: G/K \to R^n$ given by

$$x(gK) = (h_1(gK), \dots, h_n(gK)), \qquad g \in G$$

Since G acts orthogonally on V, it is easily seen that

and therefore x(G/K) is contained in the unit sphere of R^n . It follows that we may choose h_1, \dots, h_n in such a way that $x(eK) = (1, 0, \dots, 0)$ and then h_1 is a unit vector in V left fixed by the isotropy subgroup K.

Lemma 1. Let S^{n-1} be the unit sphere of V. Then the following conditions are equivalent:

- (1) V satisfies condition A,
- (2) If $v \in S^{n-1}$ is left fixed by K, and $L:V \to V$ is linear and such that $L(G \cdot v) \subset S^{n-1}$, then L is orthogonal.

Proof. Let $v \neq 0$ be left fixed by K, and choose an orthonormal basis $\{h_1, \dots, h_n\}$ in V. We shall identify V with R^n through the isometry determined by this basis. Assume now condition A holds. The condition $L(G \cdot v) \subset S^{n-1}$ is equivalent to $\langle {}^tLLg \cdot v, g \cdot v \rangle = 1$ for all $g \in G$. If B is the non-negative square root of tLL , this last condition is equivalent to

$$(2) \langle Bg \cdot v, Bg \cdot v \rangle = 1, \text{ for all } g \in G.$$

Now, let $T=(t_{ij})$ be an orthogonal matrix such that ${}^{t}TBT=D$ is diagonal, with non-zero entries $d_1, \dots, d_r, d_i > 0, i=1, \dots, r$. Let $p_i = \sum t_{ij}h_j$, $j=1, \dots, n$, and let $f_i = d_ip_i$. Then a simple computation shows that (2)

implies that $\sum (f_i(gK))^2 = 1$, for all $g \in G$. Since f_1, \dots, f_r are linearly independent, it follows from condition A that r = n, and f_1, \dots, f_n form an orthonormal basis. Hence D is orthogonal and $d_1 = \dots = d_n = 1$. Therefore ${}^tLL = I$ and L is orthogonal.

The converse is straightforward, and the proof of Lemma 1 is complete.

Before stating Lemma 2, we need some algebraic notation to be used throughout the paper.

Let W be an n-dimensional G-module with an inner product \langle , \rangle , relative to which G is orthogonal. If $v, w \in W$, we set $v \cdot w = 1/2(v \otimes w + w \otimes v)$, the symmetric product of v and w; in particular, we write $v^2 = v \cdot v$. We denote by W^2 the vector space generated by the symmetric products and make it into a G-module by

$$g \cdot (v \cdot w) = \frac{1}{2} (gv \otimes gw + gw \otimes gv), \qquad g \in G, v, w \in W.$$

Using the inner product $\langle \ , \ \rangle$ we can identify V^2 with the space of all symmetric linear maps, defining map $v\cdot w$ by

$$(v \cdot w)(u) = \frac{1}{2}(\langle v, u \rangle w + \langle w, u \rangle v) , \qquad u, v, w \in W .$$

This identification may be used to define an inner product (x, y) = trace xy, for $x, y \in W^2$. It is easily checked that

$$g \cdot v^2 = g v^2 g^{-1} ,$$

and therefore G acts orthogonally on W^2 with respect to (,).

The following relation will be useful. If $w \in W$ is a unit vector, and A is a symmetric linear map on W, then

$$\langle Aw, w \rangle = \operatorname{trace} Aw^2 = (A, w^2) .$$

This is easily proved by choosing an orthonormal basis $w = w_1, \dots, w_n$ in W, and computing with coordinates.

The following lemma is a very convenient form of condition A.

Lemma 2. Let V be an invariant, irreducible subspace of C(G/K). Then V satisfies condition A if and only if for each unit vector $v \in V$, which is left fixed by K, the orbit $G \cdot v^2$ of v^2 spans V^2 .

Proof. Assume that $G \cdot v^2$ spans V^2 , and let $L: V \to V$ be a linear map such $L(G \cdot v)$ is contained in the sphere of unit vectors of V. Then

$$\langle Lg \cdot v, Lg \cdot v \rangle = \langle g^{-1} \cdot {}^{t}LLg \cdot v, v \rangle = 1$$
, for all $g \in G$.

Using (3) and (4), we obtain that

$$(g^{-1} \cdot (^tLL), v^2) = (^tLL, g \cdot v^2) = 1$$
, for all $g \in G$.

It follows that $({}^{t}LL - I, g \cdot v^{2}) = 0$, for all $g \in G$, which implies that ${}^{t}LL - I$

= 0 since $G \cdot v^2$ spans V^2 . Hence L is orthogonal, and by Lemma 1, V satisfies condition A.

Conversely, assume that V satisfies condition A. Let $B \in V^2$ be such that $(B, g \cdot v^2) = 0$, for all $g \in G$. Then $(I + tB, g \cdot v^2) = 1$, for all $g \in G$ and all real t. Let t > 0 be such that I + tB is positive definite, and L be the positive square root of I + tB. Then $\langle Lg \cdot v, Lg \cdot v \rangle = 1$; hence L is orthogonal by Lemma 1. Since L is symmetric and positive definite, L = I. It follows that B = 0 and therefore $G \cdot v^2$ spans V^2 , which finishes the proof of Lemma 2.

We now assemble some facts on the representations of SO(3), which will be used in the proof of Proposition 1.

Let G=SO(3). It is known that the real irreducible representations V^k of G may be labeled by non-negative integers k, where $\dim V^k=2k+1$; V^k is essentially the G-module of real spherical harmonics of degree k on the sphere SO(3)/SO(2) (see § 4, Example 1). Now, let \mathfrak{g} be the complexified Lie algebra of G, with a basis $\{X, Y, H\}$ such that $\sqrt{-1}H$ is an element of the real Lie algebra of G and

$$[X, Y] = H, \quad [H, X] = 2X, \quad [H, Y] = -2Y.$$

Let W^{2k} be the complxification of V^k , looked upon as a G-module. Then it is known that there exists a basis $\{v_0, v_1, \dots, v_{2k}\}$ of W^{2k} with the following properties [6, Chap. III, § 8]:

(5)
$$X \cdot v_0 = 0$$
, $X \cdot v_j = j(2k - j + 1)v_{j-1}$, $j = 1, \dots, 2k$;

(6)
$$Y \cdot v_j = v_{j+1}, \quad j = 0, 1, \dots, 2k-1, \quad Y \cdot v_{2k} = 0;$$

(7)
$$H \cdot v_j = 2(k-j)v_j, \quad j=0,1,\dots,2k$$
.

It follows from (7) that $\sqrt{-1}H \cdot v_k = 0$ and that the eigenspace of zero is one-dimensional, hence we may assume that $v_k \in V^k$.

Now, let $\Gamma = XY + YX + 1/2 H^2$ (although we do not use it, we mention the fact that Γ is essentially the Casimir element of g). A straightforward computation with the above relations shows that the action of Γ on W^{2k} is given by

$$\Gamma = 2k(2k+1)I.$$

Let us consider the symmetric product representation $(W^{2k})^2$. It can be shown that as a g-module $(W^{2k})^2 = \sum_{j=0}^k W^{4k-4j}$. Let $P_j: (W^{2k})^2 \to W^{4k-4j}$ be the corresponding projection and set $\gamma_j = (4k-4j)(2k-2j+1)$. Then, by (8), the tensor product action of Γ on $(W^{2k})^2$ is given by $\Gamma = \sum_{j=0}^k \gamma_j P_j$.

Lemma 3. Let $w \in (W^{2k})^2$. Then $G \cdot w$ spans $(W^{2k})^2$ if and only if w, $\Gamma \cdot w$, \cdots , $\Gamma^k w$ are linearly independent.

Proof. The matrix of $I, \Gamma, \dots, \Gamma^k$ in terms of P_0, P_1, \dots, P_k is a Vandermonde matrix. It is easily checked that this matrix is non-singular,

because $\gamma_i \neq \gamma_j$ for $i \neq j$. Thus $w, \Gamma w, \dots, \Gamma^k w$ are linearly independent if and only if $P_0 w, P_1 w, \dots, P_k w$ are non-zero. Since $G \cdot (P_j w), P_j w \neq 0$, clearly spans the irreducible W^{4k-4j} , the conclusion follows.

Lemma 4. $v_r^2, \Gamma \cdot v_r^2, \cdots, \Gamma^r v_r^2$ are linearly independent for $0 \le r \le k$. *Proof.* Set $C_j = j(2k - j + 1), j = 0, 1, \cdots, 2k$. By using (5), a straightforward computation shows that

$$\Gamma v_{\tau}^2 = \left(XY + YX + \frac{1}{2}H^2 \right) v_{\tau}^2 \equiv 2C_{\tau}v_{\tau+1} \cdot v_{\tau-1}$$
,

modulo the space generated by v_{τ}^2 . We can also easily see from (5) that, for $t = 1, \dots, r$,

$$\Gamma v_{r+t} \cdot v_{r-t} \equiv 2C_{r-t}v_{r+t+1} \cdot v_{r-t+1},$$

modulo the space spanned by $v_{r+t} \cdot v_{r-t}, v_{r+t-1} \cdot v_{r-t+1}, \cdots, v_r^2$. It follows by induction that

$$\Gamma^{\iota}v_{\tau}^{2} \equiv 2^{\iota}C_{\tau} \cdot \cdot \cdot \cdot C_{\tau-t+1}v_{\tau+t} \cdot v_{\tau-t},$$

modulo the space spanned by $v_{r+t-1} \cdot v_{r-t+1}, \dots, v_r^2$; furthermore, $2^t C_r \dots C_{r-t+1} \neq 0$, for $t \leq r$. Since the vectors $v_{r+t} \cdot v_{r-t}, t = 0, 1, \dots, r$, are linearly independent, the conclusion follows.

We recall that an irreducible G-module W is called a class one representation of the pair (G, K) if there exists a $w \in W$, $w \neq 0$, such that $k \cdot w = w$, for all $k \in K$.

We are now in a position to prove the main result of this section.

Proposition 1. Let M = SU(2)/U(1) = SO(3)/SO(2). Then all invariant irreducible subspaces of C(M) satisfy condition A.

Proof. As we saw earlier in this section, an invariant irreducible subspace V of C(M) is a class one representation of the pair (SO(3), SO(2)). V is in particular a representation of SO(3) and, using the notation of Lemmas 3 and 4, we may denote it by V^k , k an integer, dim $V^k = 2k + 1$. By Lemma 4, with r = k, v_k^2 , $\Gamma \cdot v_k^2$, \cdots , $\Gamma^k v_k^2$ are linearly independent and then, by Lemma 3, $G \cdot v_k^2$ spans $(W^{2k})^2$; hence it spans $(V^k)^2$. On the other hand, since $\sqrt{-1}H \cdot v_k = 0$ and $\sqrt{-1}H$ is real, the vector v_k is left fixed by the subgroup of SO(3) corresponding to the subalgebra spanned by $\sqrt{-1}H$, namely, by SO(2). Since the subspace of V^k left fixed by SO(2) is Rv_k (see (7)), we may apply Lemma 2 to show that $V = V^k$ satisfies condition A, and hence complete the proof of Proposition 1.

3. In this section, we prove Propositions 2 and 3 (stated below), and therefore complete the proof of Theorem 1.

Proposition 2. Let G = SU(2). Then there exists an invariant irreducible subspace of C(G), which does not satisfy condition A.

Proof. Since SU(2) is the universal covering of SO(3), it clearly suffices to prove the statement of Proposition 2 for G = SO(3). Let V^k , W^{2k} , $\{v_0, \dots, v_{2k}\}$ and Γ be as in § 2. A typical element of V^k is of the form

$$w = \sum_{i=0}^{k-1} z_i v_i + x v_k + \sum_{i=0}^{k-1} (-1)^{k-i} (i!/(2k-i)!) z_i v_{2k-i},$$

where $z_i \in C$, $i = 1, \dots, k - 1$, and $x \in R$. The proof will consist merely in checking that a k can be chosen such that the element

$$w = z_i v_1 + (-1)^{k-1} (1/(2k-1)!) \bar{z}_i v_{2k-1}$$

has the property that $G \cdot w^2$ does not span $(V^k)^2$, which by Lemma 2 gives the desired conclusion.

To see that, we first remark that for $0 \le r \le k$, from (7) we have $H \cdot v_r^2 = (4k - 4j)v_r^2$. Therefore $v_r^2 \in \sum_{j=0}^r W^{4k-4j}$, and hence $\prod_{j=0}^r (I - \gamma_j I)v_r^2 = 0$, where $\gamma_j = (4k - 4j)(2k - 2j + 1)$. It follows that $\prod_{i=0}^k (I - \gamma_i I)u = 0$ for all $u \in (W^{2k})^2$. Now

$$\Gamma v_0 v_{2k} = 2XY v_0 v_{2k} = 4k v_0 v_{2k} + 4k v_1 v_{2k-1}$$
,

and hence

$$(\Gamma - 4kI)v_0v_{2k} = 4kv_1v_{2k-1}.$$

Choose a positive integer s and let k = s(2s + 1). If p = k - s then $\gamma_p = 4k$. It follows from the above remark that

$$\prod_{i=0; i\neq p}^{k} (\Gamma - \gamma_i I)(\Gamma - 4kI) v_0 \cdot v_{2k} = 0 ,$$

and therefore

(9)
$$4k \left[\int_{i=0; i\neq p}^{k} (\Gamma - \gamma_{i} I) v_{1} v_{2k-1} = 0 \right].$$

Clearly $p \ge 2$, and $v_{2k-1}^2 \in W^{4k} + W^{4k-4}$; thus

(10)
$$\prod_{i=0: i\neq p}^{k} (I' - \gamma_i I) v_1^2 = 0 = \prod_{i=0; i\neq p}^{k} (\Gamma - \gamma_i I) v_{2k-1}^2.$$

Since

$$w^2 = z_1^2 v_1^2 + \frac{(-1)^{k-1}}{(2k-1)!} |z_1|^2 v_1 \cdot v_{2k-1} + \frac{1}{((2k-1)!)^2} z_1^2 v_{2k-1}^2,$$

we conclude from (9) and (10) that

$$\prod_{i=0;i\neq 0}^k (\Gamma - \gamma_i I) w^2 = 0$$
,

hence w^2 , $\Gamma \cdot w^2$, \cdots , $\Gamma^k w^k$ are not linearly independent. It follows from Lemma 3 that $G \cdot w^k$ does not span $(V^k)^k$, and the proof is finished.

Before proving Proposition 3 below we need some notation and a few pre-

liminary lemmas. As always (G, K) is a symmetric pair of compact type, with G connected and simply connected and K connected. Let \mathfrak{g}_0 be the Lie algebra of G, \mathfrak{f}_0 be the Lie algebra of K, and $\sigma:\mathfrak{g}_0\to\mathfrak{g}_0$ be the involutive automorphism with \mathfrak{f}_0 as fixed point set. Let $\mathfrak{p}_0=\{X\in\mathfrak{g}_0\,|\,\sigma X=-X\}$ and let \mathfrak{a}_0 be a maximal abelian subsystem of \mathfrak{p}_0 ; the dimension of \mathfrak{a}_0 is called the rank of G/K. Let \mathfrak{m}_0 be maximal in \mathfrak{f}_0 relative to the conditions that \mathfrak{m}_0 be abelian and $[\mathfrak{m}_0,\mathfrak{a}_0]=0$. Let $\mathfrak{h}_0=\mathfrak{m}_0\oplus\mathfrak{a}_0$; then \mathfrak{h}_0 is a maximal abelian subalgebra of \mathfrak{g}_0 such that $\sigma\mathfrak{h}_0=\mathfrak{h}_0$. Let \mathfrak{g} be the complexification of \mathfrak{g}_0 , \mathfrak{h} the complexification of \mathfrak{h}_0 in \mathfrak{g} , and \mathfrak{d} the root system of \mathfrak{g} with respect to \mathfrak{h} . Let $\mathfrak{h}_R=\sqrt{-1}\,\mathfrak{h}_0$. if $\alpha\in\mathfrak{d}$, then $\alpha(\mathfrak{h}_R)\subset R$. Set $\mathfrak{h}_R^-=\sqrt{-1}\,\mathfrak{a}_0$, $\mathfrak{h}_R^+=\sqrt{-1}\,\mathfrak{m}_0$; let $\{h_1,\ldots,h_p\}$ be a basis for \mathfrak{h}_R^- , and $\{h_{p+1},\ldots,h_n\}$ be a basis for \mathfrak{h}_R^+ . Order \mathfrak{h}_R^+ lexicographically with respect to the ordered basis $\{h_1,\ldots,h_n\}$ of \mathfrak{h}_R and let $\Pi=\{\alpha_1,\ldots,\alpha_n\}$ be the simple system with respect to this order. Finally, denote the Weyl group of \mathfrak{d} by $W(\mathfrak{d})$.

Now let C(M; C) be the space of continuous complex-valued functions on M = G/K, and V an invariant irreducible complex subspace of C(M; C). Then, there is a unique element $\varphi_V \in V$ such that $\varphi_V(K) = 1$ and $k\varphi_V = \varphi_V$, for all $k \in K$ [5, p. 416]; φ_V is called the zonal of V.

Lemma 5. Let V be an invariant, irreducible complex subspace of C(M, C), and assume that there exists an element $s \in W(\Delta)$ such that $s \mid \mathfrak{h}_R^- = -I$. Then the zonal φ_V of V is real-valued.

Proof. Let $d\mu$ be the G-invariant volume element of M and define a Hermitian structure on C(M; C) by $\langle f, g \rangle = \int_{C} f \bar{g} d\mu$, where $f, g \in C(M; C)$.

Next, define a map $A: V \to C(M; C)$ by $Af(gK) = \langle g \cdot \varphi_V, f \rangle, g \in G$. Then A is linear unitary with respect to \langle , \rangle . Furthermore

$$(Ag_0 \cdot f)(gK) = \langle g \cdot \varphi_V, g_0 \cdot f \rangle = Af(g_0^{-1}gK) = (g_0 \cdot Af)(gK),$$

and hence AV is equivalent to V as a representation. Since C(M; C) contains each irreducible subrepresentation exactly once [3, p. 15], AV = V. It follows that $\varphi_V(g \cdot K) = \langle g\varphi_V, \varphi_V \rangle$, and hence φ_V is a positive definite function [5, p. 412] as a function on G given by $\varphi_V(g) = \varphi_V(gK)$. Therefore $\overline{\varphi_V(gK)} = \varphi_V(g^{-1}K)$.

We remark that φ_V is entirely determined by its restriction $\varphi_V|_{\exp(\mathfrak{q}_0) \cdot K}$. In fact, from $M = \exp(\mathfrak{p}_0) \cdot K$, and $Ad(K) \cdot \mathfrak{q}_0 = \mathfrak{p}_0$ [5, p. 211], it follows that $M = K \exp \mathfrak{q}_0 \cdot K$.

Now assume that there exists $s \in W(\Delta)$ such that $s \mid \mathfrak{h}_R^- = -I$. Then there exists a $k \in K$ such that $Ad(k)\mathfrak{h}_R^- = \mathfrak{h}_R^-$ and $Ad(k) \mid \mathfrak{h}_R^{-1} = -I$ [5, p. 249]. Joining these facts together, we obtain

$$\varphi_V(\exp H \cdot K) = \varphi_V(k \exp H \cdot k^{-1}K) = \varphi_V(\exp Ad(k)H \cdot K)$$
$$= \varphi_V(\exp (-H) \cdot K) = \varphi_V(\exp H \cdot K),$$

for all $\sqrt{-1} H \in \mathfrak{h}_{R}^{-}$, where $\varphi_{V} = \overline{\varphi_{V}}$, as we wished to prove.

Corollary. If M is of rank one, then all the zonals are real.

Proof. Let $\alpha \in \Pi$ be such that $\alpha(\mathfrak{h}_{R}) \neq 0$. Then the Weyl reflection S_{α} about the hyperplane $\alpha = 0$ is equal to -I in \mathfrak{h}_{R} .

Before stating the next lemma, we need a little more notation. Let g_0 act on C(M; C) by

$$(X \cdot f)(m) = \frac{d}{dt} f(\exp(-tX) \cdot m)|_{t=0}, \qquad m \in M.$$

If V is an invariant irreducible subspace of C(M; C) then $g \cdot V \subset V$. For each $\mu \in \mathfrak{h}^*$ (the complex dual of \mathfrak{h}) let $V_{\mu} = \{ f \in V \mid h \cdot f = \mu(h) \cdot f \text{ for all } h \in \mathfrak{h} \}.$ Let $V = \sum V_{\mu}$. If $V_{\mu} \neq \{0\}$, then $\mu(\mathfrak{h}_R) \subset R$ (cf. [6. p. 113]). Let λ_V be the largest λ such that $V_{\lambda} \neq \{0\}$, with respect to the given lexicographic order on \mathfrak{h}_R^* ; λ_V is called the highest weight of V. If W is another irreducible invariant subspace of C(M, C) with highest weight λ_V then W = V (see Cartan [3. p. 15]). We note that if V and W are irreducible invariant subspaces of C(M,C) then there is an irreducible subspace U of C(M, C) such that $\lambda_U = \lambda_V + \lambda_W$. In fact, let $f \in V$ (resp. $g \in W$) be such that $h \cdot f = \lambda_V(h) \cdot f$ (resp. $h \cdot g = \lambda_W(h) \cdot g$), for each $h \in \mathfrak{h}$. If $q = f \cdot g$ then $h \cdot q = (\lambda_V + \lambda_W)(h) \cdot q$, and the linear span U of $G \cdot q$ is the desired representation. There are elements $\lambda_1, \dots, \lambda_n$ of \mathfrak{h}_R^* such that $\lambda_i = \lambda_{V_i}$ for V_i an irreducible invariant subspace of C(M, C), and if V is an irreducible invariant subspace of C(M,C) then $\lambda_V = \sum n_i \lambda_i$ with n_i nonnegative integers (see Cartan [3, pp. 22-23]). It is convenient to label the invariant irreducible subspace V of C(M,C) by its highest weight λ , that is, $V=V^{\lambda}$.

Lemma 6. Let V be a real class one representation of (G, K) and let $v \in V$ be such that $K \cdot v = v$. Let W be the linear span of $G \cdot v^2$ in V^2 . Then each irreducible subrepresentation of W is of class one and W contains such a representation at most twice. Furthermore, if (G, K) satisfies the assumption of Lemma 5, then W contains each irreducible subrepresentation exactly once.

Proof. We first remark that if U is a real blass one representation of (G,K) and $N=\{u\in U|K\cdot u=u\}$, then $\dim N\leq 2$. This follows from the fact that the complexification U_C of U either is irreducible, in which case $\dim N=1$, or can be written as $U_C=U_1\oplus U_2$, with U_1 contragradient to U_2 . In the latter case, $\varphi_{U_1}=\bar{\varphi}_{U_2}$, hence $\varphi_{U_1}+\varphi_{U_2}$ and $\sqrt{-1}\,\varphi_{U_1}+\varphi_{U_2}$ generates N, and thus $\dim N\leq 2$, which proves our claim.

Now, $W = \sum W_i$, W_i irreducible. Thus $v^2 = \sum w_i \in W_i$, $w_i \in W_i$, and W_i is the linear span of Gw_i . It follows that w_i is left fixed by K and thus W_i is of class one. By our previous remark dim $N_i \leq 2$, where $N_i = \{w \in W_i | Kw = w\}$.

Let us assume that $\dim N_i = \dim N_j = 1$ and that W_i is equivalent to $W_j \neq W_i$. Then w_i and w_j transform in exactly the same manner as $w_i + w_j$, and therefore the linear span of $G(w_i + w_j)$ is equivalent to W_i and W_j and contains $w_i + w_j$, a contradiction showing that $W_i = W_j$.

Assume now that dim $N_i = \dim N_j = \dim N_k = 2$, and that W_i is equivalent to W_j and W_k , and that W_i , W_j , W_k are distinct. Then w_i , say, must transform in the same manner as some combination of w_j and w_k , say, $w_j + bw_k$. Therefore, the linear span U of $G(w_i + w_j + bw_k)$ is irreducible and $U + W_k$ contains $w_i + w_j + w_k$. This is a contradiction and shows that W_i , W_j , W_k are not distinct.

From the above considerations it follows that W contains each irreducible subrepresentation at most twice. Moreover, if (G, K) satisfies the assumption of Lemma 5, then dim $N_i = 1$ for all i. Therefore each irreducible subrepresentation appears at most once, and this completes the proof of the lemma.

We now state and prove Proposition 3 in a form slightly more precise that it was announced in the introduction.

Proposition 3. Let (G, K) be a symmetric pair of compact type, G connected and simply connected, and K connected. Assume that G/K = M is not a two-dimensional sphere S^2 . Then there exists an invariant, irreducible subspace of C(M), which does not satisfy condition A. Furthermore, if M has rank one and $M \neq S^2$, then there exists a number N > 0 such that if V is an invariant, irreducible subspace of C(M) and $\dim V \geq N$, then V does not satisfy condition A.

Proof. We first show that there are invariant irreducible subspaces of $C(S^2 \times S^2)$, which do not satisfy condition A. Observe that $S^2 \times S^2$ corresponds also to the symmetric pair $(G = SO(3) \times SO(3), K = SO(2) \times SO(2))$ and let V^k be the (2k+1)-dimensional real irreducible representation of SO(3). Let $V^k \otimes V^m$ be the tensor product representation of $SO(3) \times SO(3)$, and denote by $v_k \in V^k$, $v_m \in V^m$ the unit vectors which are left fixed by SO(2). Then $v_k \otimes v_m$ is a unit vector left fixed by $SO(2) \times SO(2)$ in $V^k \otimes V^m$; it follows easily from Lemma 5 that such a vector is unique up to a sign. Furthermore every class one representation of (G, K) is of the form $V^k \otimes V^m$. By Lemma 6, the linear span $W_{k,m}$ of $G \cdot (v_k \otimes v_m)^2$ contains each irreducible representation exactly once. It is easy to see from our results in § 2 that

$$W_{k,m} = \sum_{i=0}^{m} \sum_{j=0}^{k} V^{2k-2j} \otimes V^{2m-2i}$$
.

Now

$$\dim W_{k,m} = (2k+1)(k+1)(2m+1)(m+1) ,$$

$$\dim (V^k \otimes V^m)^2 = \frac{1}{2}(2k+1)(2m+1)\{(2k+1)(2m+1)+1\} .$$

Therefore,

$$\dim (V^k \otimes V^m)^2 - \dim W_{k,m} = (2k+1)(2m+1)km$$
.

Thus, if k and m are positive, $G \cdot (v_k \otimes v_m)^2$ does not span $(V^k \otimes V^m)^2$, which by Lemma 2 proves our claim.

We may now assume that the symmetric space M is irreducible and $M \neq S^2$. Let $\langle \ , \ \rangle$ be the Killing inner product of \mathfrak{h}_R^* (the real dual of \mathfrak{h}_R^*), and let $\Delta_i^+ = \{\alpha \in \Delta \mid \alpha > 0 \text{ and } \langle \alpha, \lambda_i \rangle \neq 0\}$, $i = 1, \dots, p$. Suppose that, for some i, Δ_i^+ consists of one element. Then $\Delta_i^+ = \{\alpha_j\}$, for some $j, 1 \leq j \leq n$, and $\alpha_j + \alpha_k \notin \Delta$ for any $k = 1, \dots, n$. The condition of irreducibility on M implies then that $n \leq 2$. If n = 1, then G = SU(2); since the only possible symmetric pair (SU(2), U(1)) corresponds to the sphere S^2 , this case is excluded. If n = 2, then $G = SU(2) \times SU(2)$. For such a G, the only possible symmetric pairs correspond to $K = U(1) \times U(1)$ and $K = \{(g, g) \mid g \in SU(2)\}$; the first case has already been considered, and in the second case $\langle \alpha_1, \lambda_1 \rangle \neq 0, \langle \alpha_2, \lambda_1 \rangle \neq 0$. By Proposition 1, it follows that we may assume that the number of elements k_i in Δ_i^+ satisfies $k_i \geq 2$.

Let V^{λ} be the invariant irreducible subspace of C(M,C) with $\lambda=q\sum\lambda_i$, $q\geq 0$, q an integer. Then V^{λ} is self dual and thus the zonal of V^{λ} is real. Hence V^{λ} is the complexification of the real irreducible G-module $V^{\lambda}\cap C(M)$. Let V^{μ} be a complex irreducible class one subrepresentation of V^2_C with highest weight μ . Then $\mu=\sum r_i\lambda_j$ with $r_j\geq 0$, r_i an integer, $i=1,\cdots,p$. We now find an upper bound for r_i , $i=1,\cdots,p$.

Since $\{\alpha_1, \dots, \alpha_n\}$ is abas is for \mathfrak{h}_R^* , $\lambda_i = \sum_{j=1}^n a_{ji}\alpha_j$, $i = 1, \dots, p$. It is easy to see that $a_{ji} \geq 0$, $i = 1, \dots, p$, $j = 1, \dots, n$. (In fact, $\langle \alpha_i, \alpha_j \rangle \leq 0$ if $i \neq j$. Thus, if ξ_1, \dots, ξ_n is the Gram-Schmidt orthonormalization of $\alpha_1, \dots, \alpha_n$, then $\xi_i = \sum_{j=1}^i t_{ji}\alpha_j$ and $t_{ji} \geq 0$. Further $\langle \lambda_i, \xi_j \rangle = b_{ji} \geq 0$, $\lambda_i = \sum b_{ji}\xi_j = \sum_{j,k} b_{ji}t_{kj}\alpha_k$, and $a_{ki} = \sum_j t_{kj}b_{ji} \geq 0$. Moreover, the matrix (a_{ji}) is of rank p. Now $2\lambda - \mu = \sum m_i\alpha_i$ with $m_i \geq 0$, m_i an integer (cf. Jacobson [6, p. 215]). Hence $2q \sum_i a_{ji} \geq \sum_i a_{ji}r_i$ for $j = 1, \dots, n$. This implies, in particular, that $2q(\sum_{ij}a_{ij}) \geq \sum_{ji}a_{ji}r_i$. Set $c = \sum_{ij}a_{ji}$, $p_i = \sum_j a_{ji}$, $i = 1, \dots, p$. Then since (a_{ji}) is of rank p, c > 0, $p_i > 0$, $i = 1, \dots, p$. Let r be an integer such that $c/p_i \leq r$ for $i = 1, \dots, p$; then $r_i \leq 2rq$, $i = 1, \dots, p$.

Let W be the complex linear span of $G \cdot v^2$ in V_C^2 . The dimension of V^{μ} is given by

$$\dim_{\mathbb{C}} V^{\mu} = \prod_{\alpha} \frac{\langle \mu + \delta, \alpha \rangle}{\langle \delta, \alpha \rangle}, \quad \alpha > 0, \quad \alpha \in \Delta,$$

where $\delta = \frac{1}{2} \sum \alpha$, $\alpha \in \Delta$, $\alpha > 0$ (cf. [6, p. 257]). We set $\sum k_i = k$ and

$$\prod_{\alpha} \frac{\langle \lambda_i, \alpha \rangle}{\langle \delta, \alpha \rangle} = d_i, \quad \alpha \in \Delta, \, \alpha > 0 ,$$

for notational convenience. By the above and Lemma 6,

$$\dim_{\mathcal{C}} W \leq 4(2qr+1)^{p} \prod_{\alpha} \left(2qr \sum_{i=1}^{p} \frac{\langle \lambda_{i}, \alpha \rangle}{\langle \delta, \alpha \rangle} + 1\right)$$

$$= 2^{p+2+k} r^{p+k} q^{k+p} \prod_{i=1}^{p} d_{i} + \text{terms of lower degree in } q.$$

On the other hand, if $\dim_c V^2 = S$ then

$$\dim_{\mathcal{C}} V_{\mathcal{C}}^2 = S(S+1)/2 = \frac{1}{2}q^{2k}(\prod_{i=1}^p d_i)^2 + \text{terms of lower degree in } q.$$

Since $k_i \geq 2$ for $i=1,\cdots,p,2k>k+p$. Thus if q is sufficiently large then $\dim_C W < \dim_C V_C^2$. This proves the first assertion of Proposition 3. If rank M=p=1 then by the corollary to Lemma 5 every invariant irreducible subspace V of C(M) is of the form $V^{q\lambda_1} \cap C(M)$. Since $\dim_C V^{q\lambda_1} < \dim V^{(q+1)\lambda_1}$, the proposition is proved.

4. In this section we will show how Proposition 1 is related to a problem in differential geometry. For completeness, we recall some known facts.

Let M be an n-dimensional compact Riemannian manifold, and Δ the Laplace-Beltrami operator on M. Let $x:M \to R^{m+1}$ be an isometric immersion of M into a Euclidean space R^{m+1} ,

(11)
$$x(p) = (f_1(p), \dots, f_{m+1}(p)), p \in M$$

such that $\Delta x + \lambda x = 0$, where λ is a real number and Δx means $(\Delta f_1, \dots, \Delta f_{m+1})$. It is then easy to prove [8, Th. 3] that λ is positive, x(M) is contained in the *m*-sphere $S_r^m \subset R^{m+1}$ of radius $r = \sqrt{n/\lambda}$, and, as an immersion into S_r^m , x is minimal.

For completeness, we sketch a proof of the above fact, using moving frames. Let $e_1, \dots, e_n, e_{n+1}, \dots, e_{m+1}$ be a local orthonormal frame in \mathbb{R}^{m+1} such that, restricted to M, e_1, \dots, e_n are tangent vectors and e_{n+1}, \dots, e_{m+1} are normal vectors. Let $h_{i\alpha j}$ be the coefficients of the second quadratic (fundamental) form in the direction e_{α} , $\alpha = n + 1, \dots, m + 1$, and $i, j = 1, \dots, n$, and set $H = (1/n) \sum_{\alpha} h_{i\alpha} e_{\alpha}$, the mean curvature vector of x. A simple computation shows that $\Delta x = nH$, and hence $x = -(n/\lambda)H$. It follows that $\langle x, dx \rangle = 0$, and therefore $|x|^2 = \text{constant} = r^2$. Thus $x(M) \subset S_r^m \subset R^{m+1}$. Now, let the last vector of the frame be given by $e_{m+1} = x/r$. It follows that if H^* is the component of H in the subspace generated by e_{n+1}, \dots, e_m , then $H^* = 0$. That is, the mean curvature of x, as an immersion into S_r^m , is zero, which is the definition of minimal immersion into S_r^m . Furthermore, since the mean curvature $(1/n) \sum_{i} h_{i,m+1,i}$ of the sphere $S_r^m \subset R^{m+1}$ is 1/r, we obtain $H = -x/r^2$. It follows that $r^2 = n/\lambda$ and $\lambda > 0$, which completes the proof. The above proof also shows that if $x: M^n \to S_r^m$ is minimal, then $\Delta x = -(n/r^2)x$, a remark that we shall use later in this section.

For the rest of this section we assume that M is a homogeneous space G/K of a compact Lie group G such that the linear action of K on the tangent space of the coset K is irreducible. G/K will be given a homogeneous Riemannian metric denoted by g. Let $\lambda \neq 0$ be a real number such that there exists a solution of

$$(12) \Delta t + \lambda t = 0$$

It is known that the vector space V_{λ} of solutions of (12) is finite dimensional [5, p. 424]. G acts on V_{λ} as in § 1, and V_{λ} is an invariant subspace of C(M). Let $W \subset V_{\lambda}$ be an invariant non-zero subspace. Choose an inner product for W as in § 1. Then an orthonormal basis $\{f_1, \dots, f_{m+1}\}$ of W determines a map $x:M \to R^{m+1}$ by (11), with $\sum_i f_i^2 = 1$. Since G acts orthogonally on W, the symmetric tensor $\bar{g} = \sum_i df_i \cdot df_i$ on M is invariant by G and, by the irreducibility of the action of K, we have that $\bar{g} = cg$, c > 0.

We now change the metric g of M to $\bar{g} = cg$ and denote by \bar{M} the space M with this new metric. The Laplacian of \bar{M} is given by $\bar{\Delta} = (1/c)\Delta$. Thus $x:\bar{M}\to S_1^m$ becomes an isometric immersion satisfying $\bar{\Delta}x=\bar{\lambda}x$, where $\bar{\lambda}=\lambda/c$. It follows that x is a minimal immersion into a sphere of radius $r=\sqrt{n/\bar{\lambda}}$. Since r=1, we conclude that $c=\lambda/n$, which determines \bar{g} . Since the homogeneous metric g of G/K is determined up to a factor, it is easily seen that this process determines \bar{g} uniquely.

We remark that x(M) is not contained in a hyperplane of R^{m+1} and that a change of orthonormal basis in W gives another isometric minimal immersion of \tilde{M} , which differs from the first one by a rigid motion.

If G/K is a symmetric space of rank one, the functions which satisfy (12) will be called spherical functions.

Example 1. Let M = SO(n+1)/SO(n) be the sphere with metric of constant curvature one. M may be realized as the unit sphere $S_1^n \subset R^{n+1}$ of a Euclidean space R^{n+1} . It can be proved that a spherical harmonic f on M is the restriction to S_1^n of a homogeneous polynomial $P(x_0, \dots, x_n)$ defined in R^{n+1} which satisfies $\sum_{i=0}^n \partial^2 P/\partial x_i^2 \equiv 0$; such a polynomial is said to be harmonic, and the degree of P is called the order k of f. The eigenvalue k of f and the dimension of V_k are explicitly determined by k [7, pp. 39,4]. It follows that an orthonormal basis of the vector space V_k , k = k

Example 2. Let $M = SU(d+1)/U(d) = P^d(C)$ be the complex projective space with the metric g of constant holomorphic curvature equal to one. Let $(z_0, \dots, z_d) \in C^{d+1}, z_i \in C, i = 0, \dots, d$, and consider $P^d(C)$ as the quotient space of the sphere $\sum_i z_i \bar{z}_i = 1$ by the equivalence relation $z_i \sim z_i e^{i\theta}$. A polynomial $P(z_0, \dots, z_d, \bar{z}_0, \dots, \bar{z}_d)$, homogeneous of degree k in both z_i and \bar{z}_i , is called harmonic if

$$\sum_{i} \partial^{2} P / \partial z_{i} \partial \bar{z}_{i} \equiv 0.$$

From the homogeneity condition, it is clear that the restriction f of P to the

¹ The result of this paragraph has been derived independently by J. Tirao of the University of California, Berkeley by using different methods, in the case when (G, K) is a symmetric pair of compact type.

sphere $\sum_i z_i \bar{z}_i = 1$ is actually defined on $P^d(C)$. It is possible to prove [4, p. 294] that, for a given degree k, the set of all such f will form an invariant irreducible subspace V of $C(P^d(C))$. It follows that $V = V_{\lambda}$ is the vector space of spherical functions on M, corresponding to a certain eigenvalue λ . Therefore for some multiple \bar{g} of the metric g we obtain an isometric minimal immersion of $P^d(C)$ into $S_1^m \subset R^{m+1}$, $m+1=\dim V_{\lambda}$; the metric \bar{g} and the dimension m are determined by the degree k. It can be proved that, for $d \neq 1$, these immersions are imbeddings [4, p. 310] and they include, for instance, the so-called Segre varieties.

Suppose now that we are given an isometric minimal immersion $x: M \to S_1^m$ $\subset R^{m+1}$ of M = G/K, with some homogeneous metric g, such that x(M) is not contained in a hyperplane of R^{m+1} , and let x be given by (11). Then, from the remark in the beginning of this section it follows that $\Delta f_i + n f_i = 0$, $i = 1, \dots, m+1$, where n is the dimension of M. Thus f_1, \dots, f_{m+1} is a linearly independent set of vectors belonging to the vector space V_i of the solutions of (12), with $\lambda = n$ and the property that $\sum_i (f_i)^2 = 1$.

Rigidity conjecture. With the above notation, if G/K is a symmetric space of rank one, then f_1, \dots, f_{m+1} form an orthonormal basis of V_{λ} ; in particular, $m+1=\dim V_{\lambda}$.

Assuming the truth of the conjecture, it follows that the immersion x is, up to a rigid motion, the one already described by the spherical harmonics of eigenvalue λ . This would give a complete description of all isometric minimal immersions of symmetric spaces of rank one into spheres.

Proposition 1 of this paper shows that the above conjecture is true for the two dimensional sphere and gives the following

Corollary of Proposition 1. Let $x: S_r^2 \to S_1^m \subset R^{m+1}$ be an isometric minimal immersion of a 2-sphere of radius r into the unit m-sphere $S_1^m \subset R^{m+1}$ such that $x(S_r^2)$ is not contained in a hyperplane of R^{m+1} , and let $x(p) = (g_1(p), \dots, g_{m+1}(p)), p \in S_r^2$. Then g_1, \dots, g_{m+1} form an orthonormal basis for the spherical harmonics of order k on S_1^2 , m = 2k and $r = [k(k+1)/2]^{1/2}$.

This result is probably already contained in [1] and, as Calabi pointed out to us, it also follows from his main theorem in [2]. In fact, it is proved in [2, p. 123] that the main theorem implies m=2k+1. Since, up to a rigid motion, any such immersion x has components $g_i=\lambda_i f_i,\ i=1,\cdots,m+1$, where f_1,\cdots,f_{m+1} form an orthonormal basis for the spherical harmonics $V_{\lambda(k)}$ of degree k, it follows that $\sum_i \lambda_i^2 f_i^2 = \sum_i f_i^2 = 1$ and $\sum_i \lambda_i^2 df_i \cdot df_i = \sum_i df_i df$. Assume that λ_1 is the smallest of the λ_i . If $\lambda_1 < 1$, it is easily seen that the functions $c_j f_i$, $j=2,\cdots,m+1$, $c_j=[(\lambda_j^2-\lambda_1^2)/(1-\lambda_j^2)]^{1/2}$, give an isometric minimal immersion into S_1^{m-1} , which is a contradiction. Therefore $\lambda_1 \geq 1$, hence $\lambda_1 = \cdots = \lambda_{m+1} = 1$, and the functions g_i form an orthonormal basis of $V_{\lambda(k)}$.

We remark that condition A is stronger than the rigidity conjecture. Therefore Proposition 1 is not equivalent to the above corollary, and the bearing of

Theorem 1 on the present problem is to show that it is impossible to prove the rigidity conjecture for anything but the 2-sphere, relying on the constancy of the sum of the squares.

References

- [1] O. Borüvka, Sur les surfaces representées par les fonctions spheriques de première espèce, J. Math. Pures Appl. 12 (1933) 337-383.
- [2] E. Calabi, Minimal immersions of surfaces in Euclidean spaces, J. Differential Geometry 1 (1967) 111-125.
- [3] E. Cartan, Sur le détermination d'un système orthogonal complet dans un espace de Riemann symétrique clos, Rend. Circ. Mat. Palermo 53 (1929) 1-36.
- [4] —, Leçons sur la géométrie projective complexe, Cahiers Sci. Vol. 10, Gauthier-Villers, Paris, 1950.
- [5] S. Halgason, Differential geometry and symmetric spaces, Academic Press, New York, 1962.
- [6] N. Jacobson, Lie algebras, Interscience, New York, 1962.
- [7] C. Müller, Spherical harmonics, Lecture Notes in Math. Vol. 17, Springer, Berlin, 1966.
- [8] T. Takahashi, Minimal immersions of Riemannian manifolds, J. Math. Soc. Japan 18 (1966) 380-385.

I.M.P.A., RIO DE JANEIRO, BRAZIL UNIVERSITY OF CALIFORNIA, BERKELY