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REPRESENTATIONS OF COMPACT GROUPS AND
MINIMAL IMMERSIONS INTO SPHERES

MANFREDO P. DO CARMO & NOLAN R. WALLACH

1. Let G be a compact group, K a closed subgroup of G, and C(M) the
space of all real-valued continuous functions on the homogeneous space
M = G/K. Then G has a natural action on C(M) given by g-f(p) = f(g”'p),
feCM), gecG, peM. Let V be a (necessarily finite-dimensional) invariant
irreducible subspace of C(M). Then ¥ may be given an inner product { , >

by ., 8 = f fgdu, where the homogeneous measure dp normalized in such
M

a way that f dy = dim V'; relative to { , >, G acts orthogonally on V.

M
Definition. We say that V satisfies condition 4 if f, ...,f, form an
orthonormal basis of V' (in particular, r = dim V), whenever f,, ---,f, are
linearly independent in ¥ and Zr} (py=1forall peM.

i=1

In this paper, we are concerned with the following question: For which
homogeneous spaces M is condition 4 satisfied for all invariant irreducible
subspaces of C(M)?

We shall restrict ourselves to the simplest homogeneous spaces, namely,
the simply connected homogeneous spaces G /K, where (G, K) is a symmetric
pair of compact type. We recall that for such a pair, G is a compact, semi-
simple Lie group with an involutive automorphism s:G — G which is such
that X is left fixed by s, and K contains the component of the identity of the
fixed point set of s. To ensure the simply connectedness of G/K, we assume
further that G is connected, simply connected and that K is connected. In this
situation, condition A4 is strangely rare. In fact, we prove the following:

Theorem 1. Let M = G/K be a homogeneous space such that (G, K) is
a symmetric pair of compact type, G is connected and simply connected, and
K is connected. Then condition A is satisfied for all invariant, irreducible sub-
spaces of C(M) if and only if M is the 2-dimensional sphere $* = SU2)/U(1).

In §2, we prove Proposition 1, which says that the invariant, irreducible
subspaces of C(S?) satisfy condition 4. In § 3, we prove Proposition 2, which
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shows that some invariant, irreducible subspace of SU(2) does not satisfy con-
dition 4, and also Proposition 3, which is a similar assertion for M = G/K,
where (G, K) satisfy the hypothesis of Theorem 1, and M = $?. Theorem 1
follows from Propositions 1 and 3.

The above question was motivated by a problem of differential geometry,
namely, to determine all isometric, minimal immersions of a symmertic space
M into the standard sphere. In § 4, we give an exposition of this problem and
show how Proposition 1 of §2 can be used to give an answer in the case
M =5

The paper is written with an eye for the differential geometer. §4 can be
read independently of § 3, and the use of the theory of representations of Lie
groups in §2 and 4 has been reduced to a minimum.

2. [In this section, we prove Proposition 1, for which we need some pre-
liminary lemmas.

Let G/K be a homogeneous space of a compact Lie group G, ¥ be an in-
variant irreducible subspace of C(G/K), and dim V' = n. We first remark that
the choice of an orthonormal basis 4,, - - -, A, for V determines an isometry of
V with the Euclidean space R”, and also a map x:G/K — R” given by

x(gK) = (h(K), - - -, h,(gK)), geG .
Since G acts orthogonally on V, it is easily seen that
(1) > (h{(gK))* =1, forall geG,

and therefore x(G/K) is contained in the unit sphere of R". It follows that we
may choose A, - - -, k2, in such a way that x(eK) = (1,0, - --,0) and then A,
is a unit vector in V left fixed by the isotropy subgroup K.

Lemma 1. Let S ! be the unit sphere of V. Then the following conditions
are equivalent:

(1) V satisfies condition A,

(2) If veS" " is left fixed by K, and L:V — V is linear and such that
L(G.-v) Cc §"}, then L is orthogonal.

Proof. Let v # 0 be left fixed by K, and choose an orthonormal basis
{hy, - -+, h,}in V. We shall identify V with R™ through the isometry determined
by this basis. Assume now condition A4 holds. The condition L(G.-v) C §**
is equivalent to (‘LLg-v,g-v), = 1 for all ge G. If B is the non-negative
square root of ‘LL, this last condition is equivalent to

(2) “Bg.-v,Bg-v> =1, forall ge G.
Now, let 7 = (z,,) be an orthogonal matrix such that *TBT = D is diagonal,

with non-zero entries d,, ---,d,,d; >0,i=1, ..., r. Let p, = 3 t;;h,,
j=1,...,n and let f; = d,p;. Then a simple computation shows that (2)
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implies that 3 (f(gK))* = 1, for all ge G. Since f,, - - -, f, are linearly in-
dependent, it follows from condition A4 that r = n, and f,, -- -, f, form an
orthonormal basis. Hence D is orthogonal and d, = - . = d, = 1. Therefore

tI.L = I and L is orthogonal.

The converse is straightforward, and the proof of Lemma 1 is complete.

Before stating Lemma 2, we need some algebraic notation to be used
throughout the paper.

Let W be an n-dimensional G-module with an inner product { , >, relative
to which G is orthogonal. If v, we W, weset v-w = 120 Q@ w + w® v),
the symmetric product of ¥ and w; in particular, we write v* = v.v. We
denote by W?* the vector space generated by the symmetric products and make
it into a G-module by

g-(v-W):%(gv®gW+gW®gv), geG,v,weW.

Using the inner product { , > we can identify ¥* with the space of all sym-
metric linear maps, defining map v-w by

w-w)w) = %((v, Ww + (w, uo) , u,v,weWw ,

This identification may be used to define an inner product ( , ) on V? setting
(x,y) = trace xy, for x,y e W2 It is easily checked that

(3) g-v' = gvig™t,

and therefore G acts orthogonally on W*? with respect to ( , ).
The following relation will be useful. If we W is a unit vector, and A4 is a
symmetric linear map on W, then

(4) {Aw, w)> = trace Aw* = (4,w) .

This is easily proved by choosing an orthonormal basis w = w,, - -+, w, in
W, and computing with coordinates.

The following lemma is a very convenient form of condition 4.

Lemma 2. Let V be an invariant, irreducible subspace of C(G/K). Then
V satisfies condition A if and only if for each unit vector v eV, which is left
fixed by K, the orbit G-v* of v* spans V>.

Proof. Assume that G.2* spans V%, andlet L: V — V be a linear map
such L(G-v) is contained in the sphere of unit vectors of V. Then

(Lg-v,Lg-v> =g "-'LLg-v,v> =1, forall geG.
Using (3) and (4), we obtain that
(g'-(CLL),v) = (‘LL,g-v*) =1, foral geG.
It follows that (‘LL — I, g-v*) = 0, for all g ¢ G, which implies that ‘LL — I



94 MANFREDO P. DO CARMO & NOLAN R. WALLACH

= 0 since G- v* spans V. Hence L is orthogonal, and by Lemma 1, V satisfies
condition A.

Conversely, assume that V satisfies condition 4. Let B e V* be such that
(B,g-v) =0, for all geG. Then (I 4 tB,g-v?) = 1, for all ge G and all
real ¢, Let ¢t > 0 be such that I + ¢B is positive definite, and L be the positive
square root of I + ¢tB. Then {Lg-v, Lg-v> = 1; hence L is orthogonal by
Lemma 1. Since L is symmetric and positive definite, L = I. It follows that
B = 0 and therefore G- v? spans V%, which finishes the proof of Lemma 2.

We now assemble some facts on the representations of SO (3), which will .
be used in the proof of Proposition 1.

Let G=S0 (3). It is known that the real irreducible representations V* of
G may be labeled by non-negative integers k, where dim V* = 2k + 1; V*
is essentially the G-module of real spherical harmonics of degree & on the
sphere SO (3)/S0 (2) (see §4, Example 1). Now, let g be the complexified
Lie algebra of G, with a basis {X, Y, H} such that ¥ —1 H is an element of
the real Lie algebra of G and

[X,Y]=H, [HX]l=2X, [HY]= -2Y.

Let W?* be the complxification of V*, looked upon as a G-module. Then it is
known that there exists a basis {v,, vy, - -+, v, } of W?* with the following
properties [6, Chap. 111, § 8]:

(5) X-v, =0, X-vj:j(Zk—j+1)1;j_l’ i=1,.-.,2k;
(6) Y'vj:vj~1* j:0717"'92k'—'17 Y'vzk:();
(1) How, =2k - Do, j=0,1,---,2k.

It follows from (7) that /' —1 H-v, = 0 and that the eigenspace of zero is
one-dimensional, hence we may assume that v, ¢ V.

Now, let ' = XY + YX +1/2 H* (although we do not use it, we mention
the fact that I” is essentially the Casimir element of g). A straightforward
computation with the above relations shows that the action of I" on W* is
given by

(8) I = 2k(2k + DI .

Let us consider the symmetric product representation (W?*)*. It can be shown
that as a g-module (W) = 3 %_ W4 Let P;:(W*) — W~ be the cor-
responding projection and set y; = (4k — 4j)(2k — 2j + 1). Then, by (8),
the tensor product action of I" on (W*)* is given by I" = 3§ r.P

Lemma 3. Let we (W*):. Then G-w spans (W) if and only ifw, I w,

, I'*w are linearly independent.

Proof. The matrix of I, I, ---, ' in terms of P, P, ---, P, is a

Vandermonde matrix. It is easily checked that this matrix is non-singular,
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because 7; # y, for i #j. Thus w, ’'w, - - ., I'"*w are linearly independent if
and only if P,w, P,w, - - -, P,w are non-zero. Since G-(P;w), P,w # 0, clearly
spans the irreducible W**~*/, the conclusion follows.
Lemmad4. %, 1-v% ..., ™% are linearly independent for 0 < r < k.
Proof. SetC, = j(2k —j+ 1), j=0,1, ---,2k. By using (5), a straight-
forward computation shows that

I = <XY +YX 4 %m)”? = 2C,0,,,° Vs,

modulo the space generated by »2. We can also easily see from (5) that, for
t=1,---,r,

I‘vr+t'vr-l = 2Cr-—tvr+t+l'vr—t-~l »

modulo the space spanned by v,,,-v,_,, 0V, ¥, .., -+ +, V2. It follows by
induction that

tay2 —
er = 2LC’r cee Cr a1 Vry Uy s

modulo the space spanned by v, ,,_,-v,_,,,, - - -, ¥*; furthermore, 2'C, - - .
C,_,.1# 0, for t < r. Since the vectors v, ., v,_,,# = 0,1, - - -, r, are linearly
independent, the conclusion follows.

We recall that an irreducible G-module W is called a class one representa-
tion of the pair (G, K) if there exists a we W, w % 0, such that k- w = w,
for all ke K.

We are now in a position to prove the main result of this section.

Proposition 1. Let M = SUQ2)/U(1) = SO(3)/SO(2). Then all invariant
irreducible subspaces of C(M) satisfy condition A.

Proof. As we saw earlier in this section, an invariant irreducible subspace
V of C(M) is a class one representation of the pair {SO(3),SO(2)). V is in
particular a representation of SO(3) and, using the notation of Lemmas 3 and
4, we may denote it by V*, k an integer, dim V* = 2k 4+ 1. By Lemma 4,
with r =k, v, I"-v%, ..., ['*v% are linearly independent and then, by
Lemma 3, G- v} spans (W?®*)?; hence it spans (V*)%. On the other hand, since
group of SO(3) corresponding to the subalgebra spanned by +/ — 1 H, namely,
by SO(2). Since the subspace of V* left fixed by SO(2) is Rv, (see (7)), we
may apply Lemma 2 to show that ¥V = V* satisfies condition 4, and hence
complete the proof of Proposition 1.

3. In this section, we prove Propositions 2 and 3 (stated below), and
therefore complete the proof of Theorem 1.

Proposition 2. Let G = SU(2). Then there exists an invariant irreducible
subspace of C(G), which does not satisfy condition A.



96 MANFREDO P. DO CARMO & NOLAN R. WALLACH

Proof. Since SU(2) is the universal covering of SO(3), it clearly suffices to
prove the statement of Proposition 2 for G = SO(3). Let V¥, W™, {v,, - - -, 05}
and I be as in §2. A typical element of V'* is of the form

w= ¥tz + xv, + (DR Rk — DDy,

where z,¢C, i =1,--., k — 1, and x € R. The proof will consist merely in
checking that a k can be chosen such that the element

w=zo + (— l)k_l(l/(Zk — DNZwy

has the property that G-w* does not span (V*)?, which by Lemma 2 gives the
desired conclusion.
To see that, we first remark that for 0 < r < k, from (7) we have H.v?
= (4k — 4j)v?. Therefore v e 3 ;_W**, and hence []}.,(I" — y;Dv: = 0,
where y; = (4k — 4))2k — 2j 4+ 1). It follows that []¥_(I" — y,Du = 0 for
all u e (W**)*, Now

Tvw,, = 2XY 0, = 4kv,v,, + 4kvvy .,
and hence
(I’ — 4kDw,y, = 4kvvy_, -

Choose a positive integer s and let k = s(2s + 1). If p = k — 5 then
7p = 4k. It follows from the above remark that

1TEoiin g — 7D — dkDvy-v,, =0,
and therefore
(9) Akt ginpT — 700y, = 0.
Clearly p > 2, and v%,_, ¢ W' 4 W*"*; thus
(10) b el — 7DV = 0 = [[igu2, (I — 7DV, -
Since

2 20 —1)* 1 2202
wo = 11 + sz: l)' | Z, [V Vakor + ((2k — l)') 2%-1 >

we conclude from (9) and (10) that
ﬂ ?:0:#0([‘ - 7’1‘I)W2 =0 s

hence w?, I"-w?, - - ., ["*w" are not linearly independent. It follows from Lemma
3 that G -w* does not span (V*)?, and the proof is finished.
Before proving Proposition 3 below we need some notation and a few pre-
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liminary lemmas. As always (G, K) is a symmetric pair of compact type, with
G connected and simply connected and K connected. Let g, be the Lie algebra
of G, ¥, be the Lie algebra of K, and ¢: g, — g, be the involutive automorphism
with {, as fixed point set. Let p, = {X e g,|6X = — X} and let a, be a maximal
abelian subsystem of p,; the dimension of a, is called the rank of G/K. Let m,
be maximal in ¥, relative to the conditions that m, be abelian and [m,, a,] = 0.
Let §, = m, P q,; then B, is a maximal abelian subalgebra of g, such that
o, = B,. Let g be the complexification of g,, §j the complexification of §, in g,
and 4 the root system of g with respect to §. Let §z = +/ —1§,. if a ¢ 4, then

a(hz) C R. Set b7 = +/ —1a,, b3 = 4/ —1 my; let {h, - -, h,} be a basis for
bz, and {h,,,, ---,h,} be a basis for h;. Order h} lexicographically with
respect to the ordered basis {A,, - - -, h,} of § and let [[ = {ay, - - -, ,} be

the simple system with respect to this order. Finally, denote the Weyl group
of 4 by W(4).

Now let C(M; C) be the space of continuous complex-valued functions on
M = G/K, and V an invariant irreducible complex subspace of C(M; C).
Then, there is a unique element ¢, e V' such that ¢,(K) = 1 and k¢, = ¢y,
for all ke K [5, p. 416]; ¢y is called the zonal of V.

Lemma 5. Let V be aninvariant, irreducible complex subspace of C(M, C),
and assume that there exists an element s ¢ W(4) such that s\%z = —1I. Then
the zonal ¢, of V is real-valued.

Proof. Let dp be the G-invariant volume element of M and define a

Hermitian structure on C(M; C) 'by 8> :ffgd/,z, where f,ge CM; C).

o
Next, define a map A:V — C(M; C) by Af(gK) = <g-¢,,f>,8¢G. Then 4
is linear unitary with respect to  , ». Furthermore

(Ag,-NEK) = {g- 9y, &> = Af(g;'gK) = (g,- A (gK),

and hence AV is equivalent to ¥ as a representation. Since C(M; C) contains
each irreducible subrepresentation exactly once [3, p. 15], AV = V. It follows
that ¢,(g-K) = {gpv, ¢y>, and hence ¢, is a positive definite function [5,
p. 412] as a function on G given by ¢,(g) = ¢,(gK). Therefore ¢,(gK) =
ov(g™K).

We remark that ¢, is entirely determined by its restriction ¢y |,pqp.x-
In fact, from M = exp(p,)- K, and Ad(K)-a, = p, [5, p. 211], it follows that
M = Kexpq,-K.

Now assume that there exists s e W(4) such that s|b;z = —I. Then there
exists a ke K such that Ad(k)hz = bz and Adk)|hz' = —1 [5, p. 249].
Joining these facts together, we obtain

oy(exp H-K) = ¢ (kexp H-k'K) = ¢,(exp Ad(k)H -K)
= gy(exp (— H)-K) = gy(exp H-K) ,
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for all v/ —1 H ¢ bz, where ¢, = &, as we wished to prove.

Corollary. If M is of rank one, then all the zonals are real.

Proof. Let ae]] be such that a(hz) # 0. Then the Weyl reflection 'S,
about the hyperplane « == 0 is equal to — I in 3.

Before stating the next lemma, we need a little more notation. Let g, act on
C(M; C) by

X -Pim) = --Z;f(CXP(— X)m)yy, meM.

If V is an invariant irreducible subspace of C(M; C) then g-V < V. For each
g€ h* (the complex dual of §) let ¥V, = {feV|h-f = p(h)-f for all heh}.
LetV =3 V, If V,+ {0}, then u(hz) C R (cf. [6. p. 113]). Let 2, be the
largest 2 such that ¥, = {0}, with respect to the given lexicographic order on
b%; A, is called the highest weight of V. If W is another irreducible invariant
subspace of C(M, C) with highest weight 2, then W = V (see Cartan [3. p. 15]).
We note that if ¥ and W are irreducible invariant subspaces of C(M, C) then
there is an irreducible subspace U of C(M, C) such that ; = 4, + ;. In fact,
let feV (resp. ge W) be such that i-f = 2,.(h)-f (resp. h-g = Az(h)-g), for
each hel. If g = f.-g then h-q = (4 + Aw)(h)-q, and the linear span U of
G.q is the desired representation. There are elements 2, - - -, 2, of H% such
that 2, = Ay, for V; an irreducible invariant subspace of C(M, C), and if V is
an irreducible invariant subspace of C(M, C) then 2, = } n;4;, with n; non-
negative integers (see Cartan [3, pp. 22-23]). It is convenient to label the
invariant irreducible subspace V of C(M, C) by its highest weight 2, that is,
V =V

Lemma 6. Let V be areal class one representation of (G,K) and let ve V
be such that K-v = v. Let W be the linear span of G-v* in V*. Then each
irreducible subrepresentation of W is of class one and W contains such a
representation at most twice. Furthermore, if (G, K) satisfies the assumption
of Lemma 5, then W contains each irreducible subrepresentation exactly once.

Proof. We first remark that if U is a real blass one representation of
(G,K) and N = {ueU|K-u = u}, then dim N < 2. This follows from the
fact that the complexification U, of U either is irreducible, in which case
dim N = 1, or can be written as U, = U, ® U,, with U, contragradient to U,.
In the latter case, ¢, = @y,, hence gy, + ¢y, and v/ —1 ¢, + ¢y, generates
N, and thus dim N < 2, which proves our claim.

Now, W = 3, W,, W, irreducible. Thus v* = >, w,e W;, w,e W, and W, is
the linear span of Gw,. It follows that w, is left fixed by K and thus W, is of
class one. By our previous remark dim N, < 2, where N, = {w ¢ W,;|Kw = w}.

Let us assume that dim N, = dim N, = 1 and that W, is equivalent to
W, + W,. Then w, and w; transform in exactly the same manner as w; + w;,
and therefore the linear span of G(w; + w;) is equivalent to W; and W, and
contains w; + w,, a contradiction showing that W, = W ;.
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Assume now that dim N; = dim N; = dim N, = 2, and that W, is equiva-
lent to W, and W,, and that W,, W, W, are distinct. Then w;, say, must
transform in the same manner as some combination of w; and w,, say,
w; + bw,. Therefore, the linear span U of G(w; + w; + bw,) is irreducible
and U + W, contains w; + w, + w,. This is a contradiction and shows that
W, W, W, are not distinct.

From the above considerations it follows that W contains each irreducible
subrepresentation at most twice. Moreover, if (G, K) satisfies the assumption
of Lemma 35, then dim N; = 1 for all i. Therefore each irreducible subrepre-
sentation appears at most once, and this completes the proof of the lemma.

We now state and prove Proposition 3 in a form slightly more precise that
it was announced in the introduction.

Proposition 3. Let (G, K) be a symmetric pair of compact type, G con-
nected and simply connected, and K connected. Assume that G/K = M is
not a two-dimensional sphere S, Then there exists an invariant, irreducible
subspace of C(M), which does not satisfy condition A. Furthermore, if M has
rank one and M + S?, then there exists a number N > 0 such that if V is an
invariant, irreducible subspace of C(M) and dimV > N, then V does not
satisfy condition A.

Proof. We first show that there are invariant irreducible subspaces of
C($* x $%, which do not satisfy condition 4. Observe that $* X S* corresponds
also to the symmetric pair (G = SO(3) x SO(3), K = SO(2) x SO(2)) and
let V¥ be the (2k + 1)-dimensional real irreducible representation of SO(3).
Let V¥ ® V™ be the tensor product representation of SO(3) x SO(3), and
denote by v, e V¥, v, ¢ V™ the unit vectors which are left fixed by SO(2).
Then v, ® v,, is a unit vector left fixed by SO(2) x SO(2) in V¥ @ V™, it
follows easily from Lemma 5 that such a vector is unique up to a sign.
Furthermore every class one representation of (G, K) is of the form V* & V',
By Lemma 6, the linear span W, ,, of G-(v, ® v,)* contains each irreducible
representation exactly once. It is easy to see from our results in § 2 that

Wk,'m, — ;n=021;=0V21c—2j ® VZ'm.—Z'L' .
Now
dm W, , = 2k + Dk + D2m + D(m + 1),
dim(V* Q@ V™) = %(Zk + D@m + D2k + D2m + 1) + 1}.

Therefore,
dim (V* ® V™) — dim W, ,, = 2k + D2m + Dkm .

Thus, if £ and m are positive, G- (v, ® v,,)* does not span (V* @ V™), which
by Lemma 2 proves our claim.
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We may now assume that the symmetric space M is irreducible and M S

Let { , > be the Killing inner product of §% (the real dual of %), and let
4 ={aed|a >0 and <{a, ;> # 0}, i =1, --., p. Suppose that, for some
i, 4} consists of one element. Then 4} = {«,}, for some j, 1 < j < n, and
o; + a, ¢ dforany kK = 1, - . -, n. The condition of irreducibility on M implies
then that n < 2. If n = 1, then G = SU(2); since the only possible symmetric
pair (SU(2), U(1)) corresponds to the sphere %, this case is excluded. If n = 2,
then G = SU(2) X SU(2). For such a G, the only possible symmetric pairs
correspond to K = U(1) x U(1) and K = {(g, 8)|g € SU(2)}; the first case
has already been considered, and in the second case {a,, 4,> % 0, {a,, 4,> * 0.
By Proposition 1, it follows that we may assume that the number of elements
k, in 4} satisfies k; > 2.

Let V? be the invariant irreducible subspace of C(M,C) with 2 = g X 4,,
g > 0,q an integer. Then V? is self dual and thus the zonal of V? is real.
Hence V* is the complexification of the real irreducible G-module V* N C(M).
Let V* be a complex irreducible class one subrepresentation of V% with highest
weight p. Then p = } r,A, with r; > 0, r; an integer, i = 1, - - -, p. We now

find an upper bound forr;,, i =1, -- -, p.

Since {a,, -+ -, a,} is abas is for b, A4, = J 7l a0, i=1,.-.,p. Itis
easy to see that a;, > 0,i=1,.--,p,j=1,.--,n (Infact, {a;,a;> <0
if i # j. Thus, if &, - - -, &, is the Gram-Schmidt orthonormalization of «;, - - -,

a,, then & = Y t..t,«; and t;; > 0. Further (4;,&;> =b;,; >0, ;=3 b,&,
= Y bjitxsax, and a,, = 3, t,;b;; > 0). Moreover, the matrix (a;;) is
of rank p. Now 24 — p = J mu; with m; > 0, m; an integer (cf. Jacobson
[6, p. 2151). Hence 2q Y}, a,; > ), a;r; for j =1, .., n. This implies, in
particular, that 2g(}],;a;;) > 2.0, Setc =3, a5, Py = 2,; 45, i=1,
-+-,p. Then since (a;;) isof rank p, ¢ >0, p, >0,i=1,..-,p. Letr be
an integer such that ¢/p;, < rfori=1,---,p; thenr, <2rq,i=1,-.-,p.

Let W be the complex linear span of G-9* in V%. The dimension of V* is
given by

dim. V* = na \/‘/_g,z’;x)_ , a>0, aecd,

where § — % S a, aed, a >0t [6,p. 257). We set 3 k, = & and

A ad
] “4n%* =d, aecd,a>0,
. (8
for notational convenience. By the above and Lemma 6,

dim, W < 4(2gr + 1)* HG(quZfﬂ_giLa}m 41
{8, )

= 2peskpp-kgktr TT0 4, 4 terms of lower degree in g.
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On the other hand, if dim; V* = S then

dim, V3 = S(S + D/2 = %qn(]'[f:ldi)z + terms of lower degree in q.

Since k; >2 for i=1,---,p,2k > k + p. Thus if g is sufficiently large
then ‘dim; W < dim¢ V. This proves the first assertion of Proposition 3.
If rank M = p = 1 then by the corollary to Lemma 5 every invariant irre-
ducible subspace ¥V of C(M) is of the form V™ N C(M). Since dim,; V% <
dim P@*vh ] the proposition is proved.

4. In this section we will show how Proposition 1 is related to a problem
in differential geometry. For completeness, we recall some known facts.

Let M be an n-dimensional compact Riemannian manifold, and 4 the
Laplace-Beltrami operator on M. Let x:M — R™*! be an isometric immersion
of M into a Euclidean space R™*?,

1D x(p) = (fp), -+, fm i) peM,

such that 4x + ix = 0, where A is a real number and 4x means (4f, -- -,
Afn .. It is then easy to prove [8, Th. 3] that A is positive, x(M) is contained
in the m-sphere S* C R™*! of radius r = +/n/1, and, as an immersion into
S$7, x is minimal.

For completeness, we sketch a proof of the above fact, using moving frames.
Lete, ---,€, €.15 + - *5 €n,, be alocal orthonormal frame in R™** such that,
restricted to M, ey, - - -, e, are tangent vectors and e,,,, - - -, €,,, are normal
vectors. Let A,,; be the coefficients of the second quadratic (fundamental)
form in the directione,, a =n +1,...,m+ 1,and i, j=1,..-,n, and set
H = (1/n) 3 ,:h;..€., the mean curvature vector of x. A simple computation
shows that 4x = nH, and hence x = —(n/DH. It follows that {x, dx> = O,
and therefore |x| = constant = r?, Thus x(M) C §* < R™*!. Now, let the
last vector of the frame be given by e, ., = x/r. [t follows that if H* is the
component of H in the subspace generated by e,,,, - - -, €,, then H* = 0.
That is, the mean curvature of x, as an immersion into S§%, is zero, which is
the definition of minimal immersion into §7. Furthermore, since the mean
curvature (1/n) 33:h; m,,,; of the sphere S? < R™*' is 1/r, we obtain
H = —x/r*. 1t follows that #* = n/2 and 4 >> 0, which completes the proof.
The above proof also shows that if x: M* — 5™ is minimal, then 4x = —(n/r¥)x,
a remark that we shall use later in this section.

For the rest of this section we assume that M is a homogeneous space G/K
of a compact Lie group G such that the linear action of K on the tangent space
of the coset K is irreducible. G/K will be given a homogeneous Riemannian
metric denoted by g. Let 2 #+ 0 be a real number such that there exists a
solution of

(12) af + 2 =0
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It is known that the vector space V, of solutions of (12) is finite dimensional
[5, p. 424]. G actson V', as in § 1, and V, is an invariant subspace of C(M).
Let W C V, be an invariant non-zero subspace. Choose an inner product for
W asin § 1. Then an orthonormal basis {f,, - - -, fn,,} of W determines a map
x:M — R™*' by (11), with 3,/ = 1. Since G acts orthogonally on W, the
symmetric tensor & = 3, df;-df; on M is invariant by G and, by the irreduci-
bility of the action of K, we have that g = cg, ¢ > 0.

We now change the metric g of M to § = cg and denote by M the space
M with this new metric. The Laplacian of M is given by 4= (l/c)A Thus
x:M — S™ becomes an isometric immersion satisfying dx = ix, where 1 = 1 /c.
It follows that x is a minimal immersion into a sphere of radius r = vn/} n/a.
Since r = 1, we conclude that ¢ = 4/n, which determines g. Since the homo-
geneous metric g of G/K is determined up to a factor, it is easily seen that
this process determines § uniquely.'

We remark that x(M) is not contained in a hyperplane of R™*! and that a
change of orthonormal basis in W gives another isometric minimal immersion
of M, which differs from the first one by a rigid motion.

If G/K is a symmetric space of rank one, the functions which satisfy (12)
will be called spherical functions.

Example 1. Let M = SO(r + 1)/SO(n) be the sphere with metric of con-
stant curvature one. M may be realized as the unit sphere S < R**! of a
Euclidean space R**'. It can be proved that a spherical harmonic f on M is
the restriction to ST of a homogeneous polynomial P(x,, - - -, x,) defined in
R7*! which satisfies >, ,0*P/ox? = 0; such a polynomial is said to be har-
monic, and the degree of P is called the order & of f. The eigenvalue A of f
and the dimension of ¥V, are explicitly determined by & [7, pp. 39,4]. It follows
that an orthonormal basis of the vector space V,;, 2 = 2(k), of the spherical
harmonics of order k gives a minimal isometric immersion x:S? — SP  R™*!
of an n-sphere S* of radius 7 into S7", where m + 1 = dim V,, and r = +/1/n;
r is determined by the fact that the metric g in S7 is (2/n)g, where g is the
metric of S7.

Example 2. Let M = SU(d + 1)/U(d) = P*(C) be the complex projective
space with the metric g of constant holomorphic curvature equal to one. Let

(2o +++,29)€C¥, z,eC, i =0, .--,d, and consider P¥(C) as the quotient
space of the sphere },z,Z, = 1 by the equivalence relation z; ~ z;e¥. A
polynomial P(zy, - - -, Zgs Zg» - * *» 24), homogeneous of degree k in both z; and

7., is called harmonic if
> 8°P/0z,0Z; = 0.
From the homogeneity condition, it is clear that the restriction f of P to the
1 The result of this paragraph has been derived independently by J. Tirao of the Uni-

versity of California, Berkeley by using different methods, in the case when (G, K) is a
symmetric pair of compact type.
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sphere 3,z,Z; = 1 is actually defined on P*C). It is possible to prove
[4, p. 294] that, for a given degree k, the set of all such f will form an in-
variant irreducible subspace V of C(P¥C)). 1t tollows that V = V, is the
vector space of spherical functions on M, corresponding to a certain eigen-
value 2. Therefore for some multiple g of the metric g we obtain an isometric
minimal immersion of P?(C) into S < R™*!, m + 1 = dim V,; the metric g
and the dimension m are determined by the degree k. It can be proved that,
for d = 1, these immersions are imbeddings {4, p. 310] and they include, for
instance, the so-called Segre varieties.

Suppose now that we are given an isometric minimal immersion x:M — SP
C R™*! of M = G/K, with some homogeneous metric g, such that x(M) is
not contained in a hyperplane of R”*1  and let x be given by (11). Then, from
the remark in the beginning of this section it follows that Af, + nf, = 0,
i=1,-.-,m+ 1, where n is the dimension of M. Thus f, ---,fn,, is a
linearly independent set of vectors belonging to the vector space V, of the
solutions of (12), with 2 = n and the property that 3, (f)? = 1.

Rigidity conjecture. With the above notation, if G/K is a symmetric space
of rank one, then f,, - - -, fn,, form an orthonormal basis of ¥,; in particular,
m+ 1 =dimV,.

Assuming the truth of the conjecture, it follows that the immersion x is, up
to a rigid motion, the one already described by the spherical harmonics of
eigenvalue 2. This would give a complete description of all isometric minimal
immersions of symmetric spaces of rank one into spheres.

Proposition 1 of this paper shows that the above conjecture is true for the
two dimensional sphere and gives the following

Corollary of Proposition 1. Let x:52 — S C R™"! be an isometric minimal
immersion of a 2-sphere of radius r into the unit m-sphere ST C R™"! such
that x(S2) is not contained in a hyperplane of R™*', and let x(p) = (g(p), - - -,
EmoiD), peS:. Then gy, - - -, gu ., form an orthonormal basis for the spherical
harmonics of order k on S, m = 2k and r = [k(k + 1}/2].

This result is probably already contained in [1] and, as Calabi pointed out
to us, it also follows from his main theorem in [2]. In fact, it is proved in
[2, p. 123] that the main theorem implies m = 2k 4 1. Since, up to a rigid
motion, any such immersion x has components g, = A;f;,, i =1, ---,m + 1,
where f,, - - -, fn,, form an orthonormal basis for the spherical harmonics V,,
of degree k, it follows that 3, 2f: = ¥, fi = 1 and 3, 24df;-df, = 3, df.df.
Assume that 1, is the smallest of the 4,. If 2, < 1, it is easily seen that the func-
tions ¢;f;, j=2,---,m+ 1, ¢; = [(A— D/(1 — HJ'?, give an isometric
minimal immersion into S7*~!, which is a contradiction. Therefore 2, > 1,
hence 2, = -++ = A,,; = 1, and the functions g, form an orthonormal basis
of V- ;

We remark that condition A4 is stronger than the rigidity conjecture. There-
fore Proposition 1 is not equivalent to the above corollary, and the bearing of
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Theorem 1 on the present problem is to show that it is impossible to prove
the rigidity conjecture for anything but the 2-sphere, relying on the constancy
of the sum of the squares.
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