REPRESENTATIONS OF COMPACT GROUPS AND MINIMAL IMMERSIONS INTO SPHERES ## MANFREDO P. DO CARMO & NOLAN R. WALLACH 1. Let G be a compact group, K a closed subgroup of G, and C(M) the space of all real-valued continuous functions on the homogeneous space M = G/K. Then G has a natural action on C(M) given by $g \cdot f(p) = f(g^{-1}p)$, $f \in C(M)$, $g \in G$, $p \in M$. Let V be a (necessarily finite-dimensional) invariant irreducible subspace of C(M). Then V may be given an inner product $\langle \cdot, \cdot \rangle$ by $\langle f, g \rangle = \int_M f g d\mu$, where the homogeneous measure $d\mu$ normalized in such a way that $\int_M d\mu = \dim V$; relative to $\langle \cdot, \cdot \rangle$, G acts orthogonally on V. **Definition.** We say that V satisfies condition A if f_1, \dots, f_{τ} form an orthonormal basis of V (in particular, $r = \dim V$), whenever f_1, \dots, f_{τ} are linearly independent in V and $\sum_{i=1}^{\tau} f_i^2(p) = 1$ for all $p \in M$. In this paper, we are concerned with the following question: For which homogeneous spaces M is condition A satisfied for all invariant irreducible subspaces of C(M)? We shall restrict ourselves to the simplest homogeneous spaces, namely, the simply connected homogeneous spaces G/K, where (G,K) is a symmetric pair of compact type. We recall that for such a pair, G is a compact, semi-simple Lie group with an involutive automorphism $s:G\to G$ which is such that K is left fixed by s, and K contains the component of the identity of the fixed point set of s. To ensure the simply connectedness of G/K, we assume further that G is connected, simply connected and that K is connected. In this situation, condition A is strangely rare. In fact, we prove the following: **Theorem 1.** Let M = G/K be a homogeneous space such that (G, K) is a symmetric pair of compact type, G is connected and simply connected, and K is connected. Then condition A is satisfied for all invariant, irreducible subspaces of C(M) if and only if M is the 2-dimensional sphere $S^2 = SU(2)/U(1)$. In § 2, we prove Proposition 1, which says that the invariant, irreducible subspaces of $C(S^2)$ satisfy condition A. In § 3, we prove Proposition 2, which Communicated by S. S. Chern, November 25, 1968. The first author was a Guggenheim fellow partially supported by C. N. Pq. and N. S. F. GP-8623, and the second author was partially supported by N. S. F. GP-7499. shows that some invariant, irreducible subspace of SU(2) does not satisfy condition A, and also Proposition 3, which is a similar assertion for M = G/K, where (G, K) satisfy the hypothesis of Theorem 1, and $M \neq S^2$. Theorem 1 follows from Propositions 1 and 3. The above question was motivated by a problem of differential geometry, namely, to determine all isometric, minimal immersions of a symmertic space M into the standard sphere. In § 4, we give an exposition of this problem and show how Proposition 1 of § 2 can be used to give an answer in the case $M = S^2$. The paper is written with an eye for the differential geometer. $\S 4$ can be read independently of $\S 3$, and the use of the theory of representations of Lie groups in $\S 2$ and 4 has been reduced to a minimum. 2. In this section, we prove Proposition 1, for which we need some preliminary lemmas. Let G/K be a homogeneous space of a compact Lie group G, V be an invariant irreducible subspace of C(G/K), and dim V = n. We first remark that the choice of an orthonormal basis h_1, \dots, h_n for V determines an isometry of V with the Euclidean space R^n , and also a map $x: G/K \to R^n$ given by $$x(gK) = (h_1(gK), \dots, h_n(gK)), \qquad g \in G$$ Since G acts orthogonally on V, it is easily seen that and therefore x(G/K) is contained in the unit sphere of R^n . It follows that we may choose h_1, \dots, h_n in such a way that $x(eK) = (1, 0, \dots, 0)$ and then h_1 is a unit vector in V left fixed by the isotropy subgroup K. **Lemma 1.** Let S^{n-1} be the unit sphere of V. Then the following conditions are equivalent: - (1) V satisfies condition A, - (2) If $v \in S^{n-1}$ is left fixed by K, and $L:V \to V$ is linear and such that $L(G \cdot v) \subset S^{n-1}$, then L is orthogonal. *Proof.* Let $v \neq 0$ be left fixed by K, and choose an orthonormal basis $\{h_1, \dots, h_n\}$ in V. We shall identify V with R^n through the isometry determined by this basis. Assume now condition A holds. The condition $L(G \cdot v) \subset S^{n-1}$ is equivalent to $\langle {}^tLLg \cdot v, g \cdot v \rangle = 1$ for all $g \in G$. If B is the non-negative square root of tLL , this last condition is equivalent to $$(2) \langle Bg \cdot v, Bg \cdot v \rangle = 1, \text{ for all } g \in G.$$ Now, let $T=(t_{ij})$ be an orthogonal matrix such that ${}^{t}TBT=D$ is diagonal, with non-zero entries $d_1, \dots, d_r, d_i > 0, i=1, \dots, r$. Let $p_i = \sum t_{ij}h_j$, $j=1, \dots, n$, and let $f_i = d_ip_i$. Then a simple computation shows that (2) implies that $\sum (f_i(gK))^2 = 1$, for all $g \in G$. Since f_1, \dots, f_r are linearly independent, it follows from condition A that r = n, and f_1, \dots, f_n form an orthonormal basis. Hence D is orthogonal and $d_1 = \dots = d_n = 1$. Therefore ${}^tLL = I$ and L is orthogonal. The converse is straightforward, and the proof of Lemma 1 is complete. Before stating Lemma 2, we need some algebraic notation to be used throughout the paper. Let W be an n-dimensional G-module with an inner product \langle , \rangle , relative to which G is orthogonal. If $v, w \in W$, we set $v \cdot w = 1/2(v \otimes w + w \otimes v)$, the symmetric product of v and w; in particular, we write $v^2 = v \cdot v$. We denote by W^2 the vector space generated by the symmetric products and make it into a G-module by $$g \cdot (v \cdot w) = \frac{1}{2} (gv \otimes gw + gw \otimes gv), \qquad g \in G, v, w \in W.$$ Using the inner product $\langle \ , \ \rangle$ we can identify V^2 with the space of all symmetric linear maps, defining map $v\cdot w$ by $$(v \cdot w)(u) = \frac{1}{2}(\langle v, u \rangle w + \langle w, u \rangle v) , \qquad u, v, w \in W .$$ This identification may be used to define an inner product (x, y) = trace xy, for $x, y \in W^2$. It is easily checked that $$g \cdot v^2 = g v^2 g^{-1} ,$$ and therefore G acts orthogonally on W^2 with respect to (,). The following relation will be useful. If $w \in W$ is a unit vector, and A is a symmetric linear map on W, then $$\langle Aw, w \rangle = \operatorname{trace} Aw^2 = (A, w^2) .$$ This is easily proved by choosing an orthonormal basis $w = w_1, \dots, w_n$ in W, and computing with coordinates. The following lemma is a very convenient form of condition A. **Lemma 2.** Let V be an invariant, irreducible subspace of C(G/K). Then V satisfies condition A if and only if for each unit vector $v \in V$, which is left fixed by K, the orbit $G \cdot v^2$ of v^2 spans V^2 . *Proof.* Assume that $G \cdot v^2$ spans V^2 , and let $L: V \to V$ be a linear map such $L(G \cdot v)$ is contained in the sphere of unit vectors of V. Then $$\langle Lg \cdot v, Lg \cdot v \rangle = \langle g^{-1} \cdot {}^{t}LLg \cdot v, v \rangle = 1$$, for all $g \in G$. Using (3) and (4), we obtain that $$(g^{-1} \cdot (^tLL), v^2) = (^tLL, g \cdot v^2) = 1$$, for all $g \in G$. It follows that $({}^{t}LL - I, g \cdot v^{2}) = 0$, for all $g \in G$, which implies that ${}^{t}LL - I$ = 0 since $G \cdot v^2$ spans V^2 . Hence L is orthogonal, and by Lemma 1, V satisfies condition A. Conversely, assume that V satisfies condition A. Let $B \in V^2$ be such that $(B, g \cdot v^2) = 0$, for all $g \in G$. Then $(I + tB, g \cdot v^2) = 1$, for all $g \in G$ and all real t. Let t > 0 be such that I + tB is positive definite, and L be the positive square root of I + tB. Then $\langle Lg \cdot v, Lg \cdot v \rangle = 1$; hence L is orthogonal by Lemma 1. Since L is symmetric and positive definite, L = I. It follows that B = 0 and therefore $G \cdot v^2$ spans V^2 , which finishes the proof of Lemma 2. We now assemble some facts on the representations of SO(3), which will be used in the proof of Proposition 1. Let G=SO(3). It is known that the real irreducible representations V^k of G may be labeled by non-negative integers k, where $\dim V^k=2k+1$; V^k is essentially the G-module of real spherical harmonics of degree k on the sphere SO(3)/SO(2) (see § 4, Example 1). Now, let \mathfrak{g} be the complexified Lie algebra of G, with a basis $\{X, Y, H\}$ such that $\sqrt{-1}H$ is an element of the real Lie algebra of G and $$[X, Y] = H, \quad [H, X] = 2X, \quad [H, Y] = -2Y.$$ Let W^{2k} be the complxification of V^k , looked upon as a G-module. Then it is known that there exists a basis $\{v_0, v_1, \dots, v_{2k}\}$ of W^{2k} with the following properties [6, Chap. III, § 8]: (5) $$X \cdot v_0 = 0$$, $X \cdot v_j = j(2k - j + 1)v_{j-1}$, $j = 1, \dots, 2k$; (6) $$Y \cdot v_j = v_{j+1}, \quad j = 0, 1, \dots, 2k-1, \quad Y \cdot v_{2k} = 0;$$ (7) $$H \cdot v_j = 2(k-j)v_j, \quad j=0,1,\dots,2k$$. It follows from (7) that $\sqrt{-1}H \cdot v_k = 0$ and that the eigenspace of zero is one-dimensional, hence we may assume that $v_k \in V^k$. Now, let $\Gamma = XY + YX + 1/2 H^2$ (although we do not use it, we mention the fact that Γ is essentially the Casimir element of g). A straightforward computation with the above relations shows that the action of Γ on W^{2k} is given by $$\Gamma = 2k(2k+1)I.$$ Let us consider the symmetric product representation $(W^{2k})^2$. It can be shown that as a g-module $(W^{2k})^2 = \sum_{j=0}^k W^{4k-4j}$. Let $P_j: (W^{2k})^2 \to W^{4k-4j}$ be the corresponding projection and set $\gamma_j = (4k-4j)(2k-2j+1)$. Then, by (8), the tensor product action of Γ on $(W^{2k})^2$ is given by $\Gamma = \sum_{j=0}^k \gamma_j P_j$. **Lemma 3.** Let $w \in (W^{2k})^2$. Then $G \cdot w$ spans $(W^{2k})^2$ if and only if w, $\Gamma \cdot w$, \cdots , $\Gamma^k w$ are linearly independent. *Proof.* The matrix of $I, \Gamma, \dots, \Gamma^k$ in terms of P_0, P_1, \dots, P_k is a Vandermonde matrix. It is easily checked that this matrix is non-singular, because $\gamma_i \neq \gamma_j$ for $i \neq j$. Thus $w, \Gamma w, \dots, \Gamma^k w$ are linearly independent if and only if $P_0 w, P_1 w, \dots, P_k w$ are non-zero. Since $G \cdot (P_j w), P_j w \neq 0$, clearly spans the irreducible W^{4k-4j} , the conclusion follows. **Lemma 4.** $v_r^2, \Gamma \cdot v_r^2, \cdots, \Gamma^r v_r^2$ are linearly independent for $0 \le r \le k$. *Proof.* Set $C_j = j(2k - j + 1), j = 0, 1, \cdots, 2k$. By using (5), a straightforward computation shows that $$\Gamma v_{\tau}^2 = \left(XY + YX + \frac{1}{2}H^2 \right) v_{\tau}^2 \equiv 2C_{\tau}v_{\tau+1} \cdot v_{\tau-1}$$, modulo the space generated by v_{τ}^2 . We can also easily see from (5) that, for $t = 1, \dots, r$, $$\Gamma v_{r+t} \cdot v_{r-t} \equiv 2C_{r-t}v_{r+t+1} \cdot v_{r-t+1},$$ modulo the space spanned by $v_{r+t} \cdot v_{r-t}, v_{r+t-1} \cdot v_{r-t+1}, \cdots, v_r^2$. It follows by induction that $$\Gamma^{\iota}v_{\tau}^{2} \equiv 2^{\iota}C_{\tau} \cdot \cdot \cdot \cdot C_{\tau-t+1}v_{\tau+t} \cdot v_{\tau-t},$$ modulo the space spanned by $v_{r+t-1} \cdot v_{r-t+1}, \dots, v_r^2$; furthermore, $2^t C_r \dots C_{r-t+1} \neq 0$, for $t \leq r$. Since the vectors $v_{r+t} \cdot v_{r-t}, t = 0, 1, \dots, r$, are linearly independent, the conclusion follows. We recall that an irreducible G-module W is called a class one representation of the pair (G, K) if there exists a $w \in W$, $w \neq 0$, such that $k \cdot w = w$, for all $k \in K$. We are now in a position to prove the main result of this section. **Proposition 1.** Let M = SU(2)/U(1) = SO(3)/SO(2). Then all invariant irreducible subspaces of C(M) satisfy condition A. **Proof.** As we saw earlier in this section, an invariant irreducible subspace V of C(M) is a class one representation of the pair (SO(3), SO(2)). V is in particular a representation of SO(3) and, using the notation of Lemmas 3 and 4, we may denote it by V^k , k an integer, dim $V^k = 2k + 1$. By Lemma 4, with r = k, v_k^2 , $\Gamma \cdot v_k^2$, \cdots , $\Gamma^k v_k^2$ are linearly independent and then, by Lemma 3, $G \cdot v_k^2$ spans $(W^{2k})^2$; hence it spans $(V^k)^2$. On the other hand, since $\sqrt{-1}H \cdot v_k = 0$ and $\sqrt{-1}H$ is real, the vector v_k is left fixed by the subgroup of SO(3) corresponding to the subalgebra spanned by $\sqrt{-1}H$, namely, by SO(2). Since the subspace of V^k left fixed by SO(2) is Rv_k (see (7)), we may apply Lemma 2 to show that $V = V^k$ satisfies condition A, and hence complete the proof of Proposition 1. 3. In this section, we prove Propositions 2 and 3 (stated below), and therefore complete the proof of Theorem 1. **Proposition 2.** Let G = SU(2). Then there exists an invariant irreducible subspace of C(G), which does not satisfy condition A. **Proof.** Since SU(2) is the universal covering of SO(3), it clearly suffices to prove the statement of Proposition 2 for G = SO(3). Let V^k , W^{2k} , $\{v_0, \dots, v_{2k}\}$ and Γ be as in § 2. A typical element of V^k is of the form $$w = \sum_{i=0}^{k-1} z_i v_i + x v_k + \sum_{i=0}^{k-1} (-1)^{k-i} (i!/(2k-i)!) z_i v_{2k-i},$$ where $z_i \in C$, $i = 1, \dots, k - 1$, and $x \in R$. The proof will consist merely in checking that a k can be chosen such that the element $$w = z_i v_1 + (-1)^{k-1} (1/(2k-1)!) \bar{z}_i v_{2k-1}$$ has the property that $G \cdot w^2$ does not span $(V^k)^2$, which by Lemma 2 gives the desired conclusion. To see that, we first remark that for $0 \le r \le k$, from (7) we have $H \cdot v_r^2 = (4k - 4j)v_r^2$. Therefore $v_r^2 \in \sum_{j=0}^r W^{4k-4j}$, and hence $\prod_{j=0}^r (I - \gamma_j I)v_r^2 = 0$, where $\gamma_j = (4k - 4j)(2k - 2j + 1)$. It follows that $\prod_{i=0}^k (I - \gamma_i I)u = 0$ for all $u \in (W^{2k})^2$. Now $$\Gamma v_0 v_{2k} = 2XY v_0 v_{2k} = 4k v_0 v_{2k} + 4k v_1 v_{2k-1}$$, and hence $$(\Gamma - 4kI)v_0v_{2k} = 4kv_1v_{2k-1}.$$ Choose a positive integer s and let k = s(2s + 1). If p = k - s then $\gamma_p = 4k$. It follows from the above remark that $$\prod_{i=0; i\neq p}^{k} (\Gamma - \gamma_i I)(\Gamma - 4kI) v_0 \cdot v_{2k} = 0 ,$$ and therefore (9) $$4k \left[\int_{i=0; i\neq p}^{k} (\Gamma - \gamma_{i} I) v_{1} v_{2k-1} = 0 \right].$$ Clearly $p \ge 2$, and $v_{2k-1}^2 \in W^{4k} + W^{4k-4}$; thus (10) $$\prod_{i=0: i\neq p}^{k} (I' - \gamma_i I) v_1^2 = 0 = \prod_{i=0; i\neq p}^{k} (\Gamma - \gamma_i I) v_{2k-1}^2.$$ Since $$w^2 = z_1^2 v_1^2 + \frac{(-1)^{k-1}}{(2k-1)!} |z_1|^2 v_1 \cdot v_{2k-1} + \frac{1}{((2k-1)!)^2} z_1^2 v_{2k-1}^2,$$ we conclude from (9) and (10) that $$\prod_{i=0;i\neq 0}^k (\Gamma - \gamma_i I) w^2 = 0$$, hence w^2 , $\Gamma \cdot w^2$, \cdots , $\Gamma^k w^k$ are not linearly independent. It follows from Lemma 3 that $G \cdot w^k$ does not span $(V^k)^k$, and the proof is finished. Before proving Proposition 3 below we need some notation and a few pre- liminary lemmas. As always (G, K) is a symmetric pair of compact type, with G connected and simply connected and K connected. Let \mathfrak{g}_0 be the Lie algebra of G, \mathfrak{f}_0 be the Lie algebra of K, and $\sigma:\mathfrak{g}_0\to\mathfrak{g}_0$ be the involutive automorphism with \mathfrak{f}_0 as fixed point set. Let $\mathfrak{p}_0=\{X\in\mathfrak{g}_0\,|\,\sigma X=-X\}$ and let \mathfrak{a}_0 be a maximal abelian subsystem of \mathfrak{p}_0 ; the dimension of \mathfrak{a}_0 is called the rank of G/K. Let \mathfrak{m}_0 be maximal in \mathfrak{f}_0 relative to the conditions that \mathfrak{m}_0 be abelian and $[\mathfrak{m}_0,\mathfrak{a}_0]=0$. Let $\mathfrak{h}_0=\mathfrak{m}_0\oplus\mathfrak{a}_0$; then \mathfrak{h}_0 is a maximal abelian subalgebra of \mathfrak{g}_0 such that $\sigma\mathfrak{h}_0=\mathfrak{h}_0$. Let \mathfrak{g} be the complexification of \mathfrak{g}_0 , \mathfrak{h} the complexification of \mathfrak{h}_0 in \mathfrak{g} , and \mathfrak{d} the root system of \mathfrak{g} with respect to \mathfrak{h} . Let $\mathfrak{h}_R=\sqrt{-1}\,\mathfrak{h}_0$. if $\alpha\in\mathfrak{d}$, then $\alpha(\mathfrak{h}_R)\subset R$. Set $\mathfrak{h}_R^-=\sqrt{-1}\,\mathfrak{a}_0$, $\mathfrak{h}_R^+=\sqrt{-1}\,\mathfrak{m}_0$; let $\{h_1,\ldots,h_p\}$ be a basis for \mathfrak{h}_R^- , and $\{h_{p+1},\ldots,h_n\}$ be a basis for \mathfrak{h}_R^+ . Order \mathfrak{h}_R^+ lexicographically with respect to the ordered basis $\{h_1,\ldots,h_n\}$ of \mathfrak{h}_R and let $\Pi=\{\alpha_1,\ldots,\alpha_n\}$ be the simple system with respect to this order. Finally, denote the Weyl group of \mathfrak{d} by $W(\mathfrak{d})$. Now let C(M; C) be the space of continuous complex-valued functions on M = G/K, and V an invariant irreducible complex subspace of C(M; C). Then, there is a unique element $\varphi_V \in V$ such that $\varphi_V(K) = 1$ and $k\varphi_V = \varphi_V$, for all $k \in K$ [5, p. 416]; φ_V is called the zonal of V. **Lemma 5.** Let V be an invariant, irreducible complex subspace of C(M, C), and assume that there exists an element $s \in W(\Delta)$ such that $s \mid \mathfrak{h}_R^- = -I$. Then the zonal φ_V of V is real-valued. *Proof.* Let $d\mu$ be the G-invariant volume element of M and define a Hermitian structure on C(M; C) by $\langle f, g \rangle = \int_{C} f \bar{g} d\mu$, where $f, g \in C(M; C)$. Next, define a map $A: V \to C(M; C)$ by $Af(gK) = \langle g \cdot \varphi_V, f \rangle, g \in G$. Then A is linear unitary with respect to \langle , \rangle . Furthermore $$(Ag_0 \cdot f)(gK) = \langle g \cdot \varphi_V, g_0 \cdot f \rangle = Af(g_0^{-1}gK) = (g_0 \cdot Af)(gK),$$ and hence AV is equivalent to V as a representation. Since C(M; C) contains each irreducible subrepresentation exactly once [3, p. 15], AV = V. It follows that $\varphi_V(g \cdot K) = \langle g\varphi_V, \varphi_V \rangle$, and hence φ_V is a positive definite function [5, p. 412] as a function on G given by $\varphi_V(g) = \varphi_V(gK)$. Therefore $\overline{\varphi_V(gK)} = \varphi_V(g^{-1}K)$. We remark that φ_V is entirely determined by its restriction $\varphi_V|_{\exp(\mathfrak{q}_0) \cdot K}$. In fact, from $M = \exp(\mathfrak{p}_0) \cdot K$, and $Ad(K) \cdot \mathfrak{q}_0 = \mathfrak{p}_0$ [5, p. 211], it follows that $M = K \exp \mathfrak{q}_0 \cdot K$. Now assume that there exists $s \in W(\Delta)$ such that $s \mid \mathfrak{h}_R^- = -I$. Then there exists a $k \in K$ such that $Ad(k)\mathfrak{h}_R^- = \mathfrak{h}_R^-$ and $Ad(k) \mid \mathfrak{h}_R^{-1} = -I$ [5, p. 249]. Joining these facts together, we obtain $$\varphi_V(\exp H \cdot K) = \varphi_V(k \exp H \cdot k^{-1}K) = \varphi_V(\exp Ad(k)H \cdot K)$$ $$= \varphi_V(\exp (-H) \cdot K) = \varphi_V(\exp H \cdot K),$$ for all $\sqrt{-1} H \in \mathfrak{h}_{R}^{-}$, where $\varphi_{V} = \overline{\varphi_{V}}$, as we wished to prove. **Corollary.** If M is of rank one, then all the zonals are real. *Proof.* Let $\alpha \in \Pi$ be such that $\alpha(\mathfrak{h}_{R}) \neq 0$. Then the Weyl reflection S_{α} about the hyperplane $\alpha = 0$ is equal to -I in \mathfrak{h}_{R} . Before stating the next lemma, we need a little more notation. Let g_0 act on C(M; C) by $$(X \cdot f)(m) = \frac{d}{dt} f(\exp(-tX) \cdot m)|_{t=0}, \qquad m \in M.$$ If V is an invariant irreducible subspace of C(M; C) then $g \cdot V \subset V$. For each $\mu \in \mathfrak{h}^*$ (the complex dual of \mathfrak{h}) let $V_{\mu} = \{ f \in V \mid h \cdot f = \mu(h) \cdot f \text{ for all } h \in \mathfrak{h} \}.$ Let $V = \sum V_{\mu}$. If $V_{\mu} \neq \{0\}$, then $\mu(\mathfrak{h}_R) \subset R$ (cf. [6. p. 113]). Let λ_V be the largest λ such that $V_{\lambda} \neq \{0\}$, with respect to the given lexicographic order on \mathfrak{h}_R^* ; λ_V is called the highest weight of V. If W is another irreducible invariant subspace of C(M, C) with highest weight λ_V then W = V (see Cartan [3. p. 15]). We note that if V and W are irreducible invariant subspaces of C(M,C) then there is an irreducible subspace U of C(M, C) such that $\lambda_U = \lambda_V + \lambda_W$. In fact, let $f \in V$ (resp. $g \in W$) be such that $h \cdot f = \lambda_V(h) \cdot f$ (resp. $h \cdot g = \lambda_W(h) \cdot g$), for each $h \in \mathfrak{h}$. If $q = f \cdot g$ then $h \cdot q = (\lambda_V + \lambda_W)(h) \cdot q$, and the linear span U of $G \cdot q$ is the desired representation. There are elements $\lambda_1, \dots, \lambda_n$ of \mathfrak{h}_R^* such that $\lambda_i = \lambda_{V_i}$ for V_i an irreducible invariant subspace of C(M, C), and if V is an irreducible invariant subspace of C(M,C) then $\lambda_V = \sum n_i \lambda_i$ with n_i nonnegative integers (see Cartan [3, pp. 22-23]). It is convenient to label the invariant irreducible subspace V of C(M,C) by its highest weight λ , that is, $V=V^{\lambda}$. **Lemma 6.** Let V be a real class one representation of (G, K) and let $v \in V$ be such that $K \cdot v = v$. Let W be the linear span of $G \cdot v^2$ in V^2 . Then each irreducible subrepresentation of W is of class one and W contains such a representation at most twice. Furthermore, if (G, K) satisfies the assumption of Lemma 5, then W contains each irreducible subrepresentation exactly once. **Proof.** We first remark that if U is a real blass one representation of (G,K) and $N=\{u\in U|K\cdot u=u\}$, then $\dim N\leq 2$. This follows from the fact that the complexification U_C of U either is irreducible, in which case $\dim N=1$, or can be written as $U_C=U_1\oplus U_2$, with U_1 contragradient to U_2 . In the latter case, $\varphi_{U_1}=\bar{\varphi}_{U_2}$, hence $\varphi_{U_1}+\varphi_{U_2}$ and $\sqrt{-1}\,\varphi_{U_1}+\varphi_{U_2}$ generates N, and thus $\dim N\leq 2$, which proves our claim. Now, $W = \sum W_i$, W_i irreducible. Thus $v^2 = \sum w_i \in W_i$, $w_i \in W_i$, and W_i is the linear span of Gw_i . It follows that w_i is left fixed by K and thus W_i is of class one. By our previous remark dim $N_i \leq 2$, where $N_i = \{w \in W_i | Kw = w\}$. Let us assume that $\dim N_i = \dim N_j = 1$ and that W_i is equivalent to $W_j \neq W_i$. Then w_i and w_j transform in exactly the same manner as $w_i + w_j$, and therefore the linear span of $G(w_i + w_j)$ is equivalent to W_i and W_j and contains $w_i + w_j$, a contradiction showing that $W_i = W_j$. Assume now that dim $N_i = \dim N_j = \dim N_k = 2$, and that W_i is equivalent to W_j and W_k , and that W_i , W_j , W_k are distinct. Then w_i , say, must transform in the same manner as some combination of w_j and w_k , say, $w_j + bw_k$. Therefore, the linear span U of $G(w_i + w_j + bw_k)$ is irreducible and $U + W_k$ contains $w_i + w_j + w_k$. This is a contradiction and shows that W_i , W_j , W_k are not distinct. From the above considerations it follows that W contains each irreducible subrepresentation at most twice. Moreover, if (G, K) satisfies the assumption of Lemma 5, then dim $N_i = 1$ for all i. Therefore each irreducible subrepresentation appears at most once, and this completes the proof of the lemma. We now state and prove Proposition 3 in a form slightly more precise that it was announced in the introduction. **Proposition 3.** Let (G, K) be a symmetric pair of compact type, G connected and simply connected, and K connected. Assume that G/K = M is not a two-dimensional sphere S^2 . Then there exists an invariant, irreducible subspace of C(M), which does not satisfy condition A. Furthermore, if M has rank one and $M \neq S^2$, then there exists a number N > 0 such that if V is an invariant, irreducible subspace of C(M) and $\dim V \geq N$, then V does not satisfy condition A. *Proof.* We first show that there are invariant irreducible subspaces of $C(S^2 \times S^2)$, which do not satisfy condition A. Observe that $S^2 \times S^2$ corresponds also to the symmetric pair $(G = SO(3) \times SO(3), K = SO(2) \times SO(2))$ and let V^k be the (2k+1)-dimensional real irreducible representation of SO(3). Let $V^k \otimes V^m$ be the tensor product representation of $SO(3) \times SO(3)$, and denote by $v_k \in V^k$, $v_m \in V^m$ the unit vectors which are left fixed by SO(2). Then $v_k \otimes v_m$ is a unit vector left fixed by $SO(2) \times SO(2)$ in $V^k \otimes V^m$; it follows easily from Lemma 5 that such a vector is unique up to a sign. Furthermore every class one representation of (G, K) is of the form $V^k \otimes V^m$. By Lemma 6, the linear span $W_{k,m}$ of $G \cdot (v_k \otimes v_m)^2$ contains each irreducible representation exactly once. It is easy to see from our results in § 2 that $$W_{k,m} = \sum_{i=0}^{m} \sum_{j=0}^{k} V^{2k-2j} \otimes V^{2m-2i}$$. Now $$\dim W_{k,m} = (2k+1)(k+1)(2m+1)(m+1) ,$$ $$\dim (V^k \otimes V^m)^2 = \frac{1}{2}(2k+1)(2m+1)\{(2k+1)(2m+1)+1\} .$$ Therefore, $$\dim (V^k \otimes V^m)^2 - \dim W_{k,m} = (2k+1)(2m+1)km$$. Thus, if k and m are positive, $G \cdot (v_k \otimes v_m)^2$ does not span $(V^k \otimes V^m)^2$, which by Lemma 2 proves our claim. We may now assume that the symmetric space M is irreducible and $M \neq S^2$. Let $\langle \ , \ \rangle$ be the Killing inner product of \mathfrak{h}_R^* (the real dual of \mathfrak{h}_R^*), and let $\Delta_i^+ = \{\alpha \in \Delta \mid \alpha > 0 \text{ and } \langle \alpha, \lambda_i \rangle \neq 0\}$, $i = 1, \dots, p$. Suppose that, for some i, Δ_i^+ consists of one element. Then $\Delta_i^+ = \{\alpha_j\}$, for some $j, 1 \leq j \leq n$, and $\alpha_j + \alpha_k \notin \Delta$ for any $k = 1, \dots, n$. The condition of irreducibility on M implies then that $n \leq 2$. If n = 1, then G = SU(2); since the only possible symmetric pair (SU(2), U(1)) corresponds to the sphere S^2 , this case is excluded. If n = 2, then $G = SU(2) \times SU(2)$. For such a G, the only possible symmetric pairs correspond to $K = U(1) \times U(1)$ and $K = \{(g, g) \mid g \in SU(2)\}$; the first case has already been considered, and in the second case $\langle \alpha_1, \lambda_1 \rangle \neq 0, \langle \alpha_2, \lambda_1 \rangle \neq 0$. By Proposition 1, it follows that we may assume that the number of elements k_i in Δ_i^+ satisfies $k_i \geq 2$. Let V^{λ} be the invariant irreducible subspace of C(M,C) with $\lambda=q\sum\lambda_i$, $q\geq 0$, q an integer. Then V^{λ} is self dual and thus the zonal of V^{λ} is real. Hence V^{λ} is the complexification of the real irreducible G-module $V^{\lambda}\cap C(M)$. Let V^{μ} be a complex irreducible class one subrepresentation of V^2_C with highest weight μ . Then $\mu=\sum r_i\lambda_j$ with $r_j\geq 0$, r_i an integer, $i=1,\cdots,p$. We now find an upper bound for r_i , $i=1,\cdots,p$. Since $\{\alpha_1, \dots, \alpha_n\}$ is abas is for \mathfrak{h}_R^* , $\lambda_i = \sum_{j=1}^n a_{ji}\alpha_j$, $i = 1, \dots, p$. It is easy to see that $a_{ji} \geq 0$, $i = 1, \dots, p$, $j = 1, \dots, n$. (In fact, $\langle \alpha_i, \alpha_j \rangle \leq 0$ if $i \neq j$. Thus, if ξ_1, \dots, ξ_n is the Gram-Schmidt orthonormalization of $\alpha_1, \dots, \alpha_n$, then $\xi_i = \sum_{j=1}^i t_{ji}\alpha_j$ and $t_{ji} \geq 0$. Further $\langle \lambda_i, \xi_j \rangle = b_{ji} \geq 0$, $\lambda_i = \sum b_{ji}\xi_j = \sum_{j,k} b_{ji}t_{kj}\alpha_k$, and $a_{ki} = \sum_j t_{kj}b_{ji} \geq 0$. Moreover, the matrix (a_{ji}) is of rank p. Now $2\lambda - \mu = \sum m_i\alpha_i$ with $m_i \geq 0$, m_i an integer (cf. Jacobson [6, p. 215]). Hence $2q \sum_i a_{ji} \geq \sum_i a_{ji}r_i$ for $j = 1, \dots, n$. This implies, in particular, that $2q(\sum_{ij}a_{ij}) \geq \sum_{ji}a_{ji}r_i$. Set $c = \sum_{ij}a_{ji}$, $p_i = \sum_j a_{ji}$, $i = 1, \dots, p$. Then since (a_{ji}) is of rank p, c > 0, $p_i > 0$, $i = 1, \dots, p$. Let r be an integer such that $c/p_i \leq r$ for $i = 1, \dots, p$; then $r_i \leq 2rq$, $i = 1, \dots, p$. Let W be the complex linear span of $G \cdot v^2$ in V_C^2 . The dimension of V^{μ} is given by $$\dim_{\mathbb{C}} V^{\mu} = \prod_{\alpha} \frac{\langle \mu + \delta, \alpha \rangle}{\langle \delta, \alpha \rangle}, \quad \alpha > 0, \quad \alpha \in \Delta,$$ where $\delta = \frac{1}{2} \sum \alpha$, $\alpha \in \Delta$, $\alpha > 0$ (cf. [6, p. 257]). We set $\sum k_i = k$ and $$\prod_{\alpha} \frac{\langle \lambda_i, \alpha \rangle}{\langle \delta, \alpha \rangle} = d_i, \quad \alpha \in \Delta, \, \alpha > 0 ,$$ for notational convenience. By the above and Lemma 6, $$\dim_{\mathcal{C}} W \leq 4(2qr+1)^{p} \prod_{\alpha} \left(2qr \sum_{i=1}^{p} \frac{\langle \lambda_{i}, \alpha \rangle}{\langle \delta, \alpha \rangle} + 1\right)$$ $$= 2^{p+2+k} r^{p+k} q^{k+p} \prod_{i=1}^{p} d_{i} + \text{terms of lower degree in } q.$$ On the other hand, if $\dim_c V^2 = S$ then $$\dim_{\mathcal{C}} V_{\mathcal{C}}^2 = S(S+1)/2 = \frac{1}{2}q^{2k}(\prod_{i=1}^p d_i)^2 + \text{terms of lower degree in } q.$$ Since $k_i \geq 2$ for $i=1,\cdots,p,2k>k+p$. Thus if q is sufficiently large then $\dim_C W < \dim_C V_C^2$. This proves the first assertion of Proposition 3. If rank M=p=1 then by the corollary to Lemma 5 every invariant irreducible subspace V of C(M) is of the form $V^{q\lambda_1} \cap C(M)$. Since $\dim_C V^{q\lambda_1} < \dim V^{(q+1)\lambda_1}$, the proposition is proved. 4. In this section we will show how Proposition 1 is related to a problem in differential geometry. For completeness, we recall some known facts. Let M be an n-dimensional compact Riemannian manifold, and Δ the Laplace-Beltrami operator on M. Let $x:M \to R^{m+1}$ be an isometric immersion of M into a Euclidean space R^{m+1} , (11) $$x(p) = (f_1(p), \dots, f_{m+1}(p)), p \in M$$ such that $\Delta x + \lambda x = 0$, where λ is a real number and Δx means $(\Delta f_1, \dots, \Delta f_{m+1})$. It is then easy to prove [8, Th. 3] that λ is positive, x(M) is contained in the *m*-sphere $S_r^m \subset R^{m+1}$ of radius $r = \sqrt{n/\lambda}$, and, as an immersion into S_r^m , x is minimal. For completeness, we sketch a proof of the above fact, using moving frames. Let $e_1, \dots, e_n, e_{n+1}, \dots, e_{m+1}$ be a local orthonormal frame in \mathbb{R}^{m+1} such that, restricted to M, e_1, \dots, e_n are tangent vectors and e_{n+1}, \dots, e_{m+1} are normal vectors. Let $h_{i\alpha j}$ be the coefficients of the second quadratic (fundamental) form in the direction e_{α} , $\alpha = n + 1, \dots, m + 1$, and $i, j = 1, \dots, n$, and set $H = (1/n) \sum_{\alpha} h_{i\alpha} e_{\alpha}$, the mean curvature vector of x. A simple computation shows that $\Delta x = nH$, and hence $x = -(n/\lambda)H$. It follows that $\langle x, dx \rangle = 0$, and therefore $|x|^2 = \text{constant} = r^2$. Thus $x(M) \subset S_r^m \subset R^{m+1}$. Now, let the last vector of the frame be given by $e_{m+1} = x/r$. It follows that if H^* is the component of H in the subspace generated by e_{n+1}, \dots, e_m , then $H^* = 0$. That is, the mean curvature of x, as an immersion into S_r^m , is zero, which is the definition of minimal immersion into S_r^m . Furthermore, since the mean curvature $(1/n) \sum_{i} h_{i,m+1,i}$ of the sphere $S_r^m \subset R^{m+1}$ is 1/r, we obtain $H = -x/r^2$. It follows that $r^2 = n/\lambda$ and $\lambda > 0$, which completes the proof. The above proof also shows that if $x: M^n \to S_r^m$ is minimal, then $\Delta x = -(n/r^2)x$, a remark that we shall use later in this section. For the rest of this section we assume that M is a homogeneous space G/K of a compact Lie group G such that the linear action of K on the tangent space of the coset K is irreducible. G/K will be given a homogeneous Riemannian metric denoted by g. Let $\lambda \neq 0$ be a real number such that there exists a solution of $$(12) \Delta t + \lambda t = 0$$ It is known that the vector space V_{λ} of solutions of (12) is finite dimensional [5, p. 424]. G acts on V_{λ} as in § 1, and V_{λ} is an invariant subspace of C(M). Let $W \subset V_{\lambda}$ be an invariant non-zero subspace. Choose an inner product for W as in § 1. Then an orthonormal basis $\{f_1, \dots, f_{m+1}\}$ of W determines a map $x:M \to R^{m+1}$ by (11), with $\sum_i f_i^2 = 1$. Since G acts orthogonally on W, the symmetric tensor $\bar{g} = \sum_i df_i \cdot df_i$ on M is invariant by G and, by the irreducibility of the action of K, we have that $\bar{g} = cg$, c > 0. We now change the metric g of M to $\bar{g} = cg$ and denote by \bar{M} the space M with this new metric. The Laplacian of \bar{M} is given by $\bar{\Delta} = (1/c)\Delta$. Thus $x:\bar{M}\to S_1^m$ becomes an isometric immersion satisfying $\bar{\Delta}x=\bar{\lambda}x$, where $\bar{\lambda}=\lambda/c$. It follows that x is a minimal immersion into a sphere of radius $r=\sqrt{n/\bar{\lambda}}$. Since r=1, we conclude that $c=\lambda/n$, which determines \bar{g} . Since the homogeneous metric g of G/K is determined up to a factor, it is easily seen that this process determines \bar{g} uniquely. We remark that x(M) is not contained in a hyperplane of R^{m+1} and that a change of orthonormal basis in W gives another isometric minimal immersion of \tilde{M} , which differs from the first one by a rigid motion. If G/K is a symmetric space of rank one, the functions which satisfy (12) will be called spherical functions. **Example 1.** Let M = SO(n+1)/SO(n) be the sphere with metric of constant curvature one. M may be realized as the unit sphere $S_1^n \subset R^{n+1}$ of a Euclidean space R^{n+1} . It can be proved that a spherical harmonic f on M is the restriction to S_1^n of a homogeneous polynomial $P(x_0, \dots, x_n)$ defined in R^{n+1} which satisfies $\sum_{i=0}^n \partial^2 P/\partial x_i^2 \equiv 0$; such a polynomial is said to be harmonic, and the degree of P is called the order k of f. The eigenvalue k of f and the dimension of V_k are explicitly determined by k [7, pp. 39,4]. It follows that an orthonormal basis of the vector space V_k , k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k = k **Example 2.** Let $M = SU(d+1)/U(d) = P^d(C)$ be the complex projective space with the metric g of constant holomorphic curvature equal to one. Let $(z_0, \dots, z_d) \in C^{d+1}, z_i \in C, i = 0, \dots, d$, and consider $P^d(C)$ as the quotient space of the sphere $\sum_i z_i \bar{z}_i = 1$ by the equivalence relation $z_i \sim z_i e^{i\theta}$. A polynomial $P(z_0, \dots, z_d, \bar{z}_0, \dots, \bar{z}_d)$, homogeneous of degree k in both z_i and \bar{z}_i , is called harmonic if $$\sum_{i} \partial^{2} P / \partial z_{i} \partial \bar{z}_{i} \equiv 0.$$ From the homogeneity condition, it is clear that the restriction f of P to the ¹ The result of this paragraph has been derived independently by J. Tirao of the University of California, Berkeley by using different methods, in the case when (G, K) is a symmetric pair of compact type. sphere $\sum_i z_i \bar{z}_i = 1$ is actually defined on $P^d(C)$. It is possible to prove [4, p. 294] that, for a given degree k, the set of all such f will form an invariant irreducible subspace V of $C(P^d(C))$. It follows that $V = V_{\lambda}$ is the vector space of spherical functions on M, corresponding to a certain eigenvalue λ . Therefore for some multiple \bar{g} of the metric g we obtain an isometric minimal immersion of $P^d(C)$ into $S_1^m \subset R^{m+1}$, $m+1=\dim V_{\lambda}$; the metric \bar{g} and the dimension m are determined by the degree k. It can be proved that, for $d \neq 1$, these immersions are imbeddings [4, p. 310] and they include, for instance, the so-called Segre varieties. Suppose now that we are given an isometric minimal immersion $x: M \to S_1^m$ $\subset R^{m+1}$ of M = G/K, with some homogeneous metric g, such that x(M) is not contained in a hyperplane of R^{m+1} , and let x be given by (11). Then, from the remark in the beginning of this section it follows that $\Delta f_i + n f_i = 0$, $i = 1, \dots, m+1$, where n is the dimension of M. Thus f_1, \dots, f_{m+1} is a linearly independent set of vectors belonging to the vector space V_i of the solutions of (12), with $\lambda = n$ and the property that $\sum_i (f_i)^2 = 1$. **Rigidity conjecture.** With the above notation, if G/K is a symmetric space of rank one, then f_1, \dots, f_{m+1} form an orthonormal basis of V_{λ} ; in particular, $m+1=\dim V_{\lambda}$. Assuming the truth of the conjecture, it follows that the immersion x is, up to a rigid motion, the one already described by the spherical harmonics of eigenvalue λ . This would give a complete description of all isometric minimal immersions of symmetric spaces of rank one into spheres. Proposition 1 of this paper shows that the above conjecture is true for the two dimensional sphere and gives the following **Corollary of Proposition 1.** Let $x: S_r^2 \to S_1^m \subset R^{m+1}$ be an isometric minimal immersion of a 2-sphere of radius r into the unit m-sphere $S_1^m \subset R^{m+1}$ such that $x(S_r^2)$ is not contained in a hyperplane of R^{m+1} , and let $x(p) = (g_1(p), \dots, g_{m+1}(p)), p \in S_r^2$. Then g_1, \dots, g_{m+1} form an orthonormal basis for the spherical harmonics of order k on S_1^2 , m = 2k and $r = [k(k+1)/2]^{1/2}$. This result is probably already contained in [1] and, as Calabi pointed out to us, it also follows from his main theorem in [2]. In fact, it is proved in [2, p. 123] that the main theorem implies m=2k+1. Since, up to a rigid motion, any such immersion x has components $g_i=\lambda_i f_i,\ i=1,\cdots,m+1$, where f_1,\cdots,f_{m+1} form an orthonormal basis for the spherical harmonics $V_{\lambda(k)}$ of degree k, it follows that $\sum_i \lambda_i^2 f_i^2 = \sum_i f_i^2 = 1$ and $\sum_i \lambda_i^2 df_i \cdot df_i = \sum_i df_i df$. Assume that λ_1 is the smallest of the λ_i . If $\lambda_1 < 1$, it is easily seen that the functions $c_j f_i$, $j=2,\cdots,m+1$, $c_j=[(\lambda_j^2-\lambda_1^2)/(1-\lambda_j^2)]^{1/2}$, give an isometric minimal immersion into S_1^{m-1} , which is a contradiction. Therefore $\lambda_1 \geq 1$, hence $\lambda_1 = \cdots = \lambda_{m+1} = 1$, and the functions g_i form an orthonormal basis of $V_{\lambda(k)}$. We remark that condition A is stronger than the rigidity conjecture. Therefore Proposition 1 is not equivalent to the above corollary, and the bearing of Theorem 1 on the present problem is to show that it is impossible to prove the rigidity conjecture for anything but the 2-sphere, relying on the constancy of the sum of the squares. ## References - [1] O. Borüvka, Sur les surfaces representées par les fonctions spheriques de première espèce, J. Math. Pures Appl. 12 (1933) 337-383. - [2] E. Calabi, Minimal immersions of surfaces in Euclidean spaces, J. Differential Geometry 1 (1967) 111-125. - [3] E. Cartan, Sur le détermination d'un système orthogonal complet dans un espace de Riemann symétrique clos, Rend. Circ. Mat. Palermo 53 (1929) 1-36. - [4] —, Leçons sur la géométrie projective complexe, Cahiers Sci. Vol. 10, Gauthier-Villers, Paris, 1950. - [5] S. Halgason, Differential geometry and symmetric spaces, Academic Press, New York, 1962. - [6] N. Jacobson, Lie algebras, Interscience, New York, 1962. - [7] C. Müller, Spherical harmonics, Lecture Notes in Math. Vol. 17, Springer, Berlin, 1966. - [8] T. Takahashi, Minimal immersions of Riemannian manifolds, J. Math. Soc. Japan 18 (1966) 380-385. I.M.P.A., RIO DE JANEIRO, BRAZIL UNIVERSITY OF CALIFORNIA, BERKELY